736 research outputs found

    Momentum-resolved electron-phonon interaction in lead determined by neutron resonance spin-echo spectroscopy

    Get PDF
    Neutron resonance spin-echo spectroscopy was used to monitor the temperature evolution of the linewidths of transverse acoustic phonons in lead across the superconducting transition temperature, TcT_c, over an extended range of the Brillouin zone. For phonons with energies below the superconducting energy gap, a linewidth reduction of maximum amplitude 6μ\sim 6 \mueV was observed below TcT_c. The electron-phonon contribution to the phonon lifetime extracted from these data is in satisfactory overall agreement with {\it ab-initio} lattice-dynamical calculations, but significant deviations are found

    Landau damping of Bogoliubov excitations in optical lattices at finite temperature

    Full text link
    We study the damping of Bogoliubov excitations in an optical lattice at finite temperatures. For simplicity, we consider a Bose-Hubbard tight-binding model and limit our analysis to the lowest excitation band. We use the Popov approximation to calculate the temperature dependence of the number of condensate atoms nc0(T)n^{\rm c 0}(T) in each lattice well. We calculate the Landau damping of a Bogoliubov excitation in an optical lattice due to coupling to a thermal cloud of excitations. While most of the paper concentrates on 1D optical lattices, we also briefly present results for 2D and 3D lattices. For energy conservation to be satisfied, we find that the excitations in the collision process must exhibit anomalous dispersion ({\it i.e.} the excitation energy must bend upward at low momentum), as also exhibited by phonons in superfluid 4He^4\rm{He}. This leads to the sudden disappearance of all damping processes in DD-dimensional simple cubic optical lattice when Unc06DJU n^{\rm c 0}\ge 6DJ, where UU is the on-site interaction, and JJ is the hopping matrix element. Beliaev damping in a 1D optical lattice is briefly discussed.Comment: 28 pages, 9 figure

    Large Scales - Long Times: Adding High Energy Resolution to SANS

    Full text link
    The Neutron Spin Echo (NSE) variant MIEZE (Modulation of IntEnsity by Zero Effort), where all beam manipulations are performed before the sample position, offers the possibility to perform low background SANS measurements in strong magnetic fields and depolarising samples. However, MIEZE is sensitive to differences \DeltaL in the length of neutron flight paths through the instrument and the sample. In this article, we discuss the major influence of \DeltaL on contrast reduction of MIEZE measurements and its minimisation. Finally we present a design case for enhancing a small-angle neutron scattering (SANS) instrument at the planned European Spallation Source (ESS) in Lund, Sweden, using a combination of MIEZE and other TOF options, such as TISANE offering time windows from ns to minutes. The proposed instrument allows studying fluctuations in depolarizing samples, samples exposed to strong magnetic fields, and spin-incoherently scattering samples in a straightforward way up to time scales of \mus at momentum transfers up to 0.01 {\AA}-1, while keeping the instrumental effort and costs low.Comment: 5 pages, 8 figure

    Mass loss and longevity of gravitationally bound oscillating scalar lumps (oscillatons) in D-dimensions

    Get PDF
    Spherically symmetric oscillatons (also referred to as oscillating soliton stars) i.e. gravitationally bound oscillating scalar lumps are considered in theories containing a massive self-interacting real scalar field coupled to Einstein's gravity in 1+D dimensional spacetimes. Oscillations are known to decay by emitting scalar radiation with a characteristic time scale which is, however, extremely long, it can be comparable even to the lifetime of our universe. In the limit when the central density (or amplitude) of the oscillaton tends to zero (small-amplitude limit) a method is introduced to compute the transcendentally small amplitude of the outgoing waves. The results are illustrated in detail on the simplest case, a single massive free scalar field coupled to gravity.Comment: 23 pages, 2 figures, references on oscillons added, version to appear in Phys. Rev.

    Magnetic Fluctuations and Correlations in MnSi - Evidence for a Skyrmion Spin Liquid Phase

    Full text link
    We present a comprehensive analysis of high resolution neutron scattering data involving Neutron Spin Echo spectroscopy and Spherical Polarimetry which confirm the first order nature of the helical transition and reveal the existence of a new spin liquid skyrmion phase. Similar to the blue phases of liquid crystals this phase appears in a very narrow temperature range between the low temperature helical and the high temperature paramagnetic phases.Comment: 11 pages, 16 figure

    Ready to Use Detector Modules for the NEAT Spectrometer Concept, Design, First Results

    Get PDF
    The paper presents the detector system developed by Datalist Systems, Ltd. previously ANTE Innovative Technologies for the NEAT II spectrometer at HZB. We present initial concept, design and implementation highlights as well as the first results of measurements such as position resolution. The initial concept called for modular architecture with 416 3He detector tubes organized into thirteen 32 tube modules that can be independently installed and removed to and from the detector vacuum chamber for ease of maintenance. The unalloyed aluminum mechanical support modules for four 8 tube units each also house the air boxes that contain the front end electronics preamplifiers that need to be on atmospheric pressure. The modules have been manufactured and partly assembled in Hungary and then fully assembled and installed on site by Datalist Systems crew. The signal processing and data acquisition solution is based on low time constant 60 ns preamplifier electronics and sampling ADC s running at 50 MS s i.e. a sample every 20 ns for all 832 data channels. The preamplifiers are proprietary, developed specifically for the NEAT spectrometer, while the ADC s and the FPGA s that further process the data are based on National Instruments products. The data acquisition system comprises 26 FPGA modules each serving 16 tubes providing for up to 50 kHz count rate per individual tube and it is organized into two PXI chassis and two data acquisition computers that perform post processing, event classification and provide appropriate preview of the collected data. The data acquisition software based on Event Recording principles provides a single point of contact for the scientific software with an Event Record List with absolute timestamps of 100ns resolution, timing data of 100 ns resolution for the seven discs chopper system as well as classification data that can be used for flexible data filtering in off line analysis of the gathered data. A unique 3 tier system of filtering criteria of events is in operation a hard threshold in the FPGA s to reduce the effect of noise, a pulse shape based classification to eliminate gamma sensitivity and an additional flexible feature based classification to filter out pileup and other unwanted phenomena. This ensures high count rates 50kHz per tube, 1MHz overall while maintaining good quality of measurements e.g. position resolution .The first measurement results show that the delivered detector system meets the initial requirements of 20 mm position resolution along the 2000mm long detector tubes. This is partly due to the innovative event classification system that provides vital pulse shape data that can be used for sophisticated position resolution algorithms implemented on the DAQ computer

    GEANT4 Studies of Magnets Activation in the HEBT Line for the European Spallation Source

    Get PDF
    The High Energy Beam Transport (HEBT) line for the European Spallation Source is designed to transport the beam from the underground linac to the target at the surface level while keeping the beam losses small and providing the requested beam footprint and profile on the target. This paper presents activation studies of the magnets in the HEBT line due to backscattered neutrons from the target and beam interactions inside the collimators producing unstable isotopes

    Theory of the Fano Resonance in the STM Tunneling Density of States due to a Single Kondo Impurity

    Full text link
    The conduction electron density of states nearby single magnetic impurities, as measured recently by scanning tunneling microscopy (STM), is calculated, taking into account tunneling into conduction electron states only. The Kondo effect induces a narrow Fano resonance in the conduction electron density of states, while scattering off the d-level generates a weakly energy dependent Friedel oscillation. The line shape varies with the distance between STM tip and impurity, in qualitative agreement with experiments, but is very sensitive to details of the band structure. For a Co impurity the experimentally observed width and shift of the Kondo resonance are in accordance with those obtained from a combination of band structure and strongly correlated calculations.Comment: 4 pages, ReVTeX + 4 figures (Encapsulated Postscript), submitted to PR
    corecore