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Abstract

The High Energy Beam Transport (HEBT) line for the

European Spallation Source is designed to transport the

beam from the underground linac to the target at the sur-

face level while keeping the beam losses small and provid-

ing the requested beam footprint and profile on the target.

This paper presents activation studies of the magnets in the

HEBT line due to the backscattered neutrons from the tar-

get and beam interactions inside the collimators producing

unstable isotopes.

INTRODUCTION

The European Spallation Source (ESS) in Lund, Swe-

den, is a high power (5MW) proton accelerator which will

produce high intensity neutron beams through spallation.

The high-energy beam transport (HEBT) line will transport

the 5 MeV, 2.5 GeV proton beam from the underground

linac to the spallation tungsten target at surface level. The

HEBT design used in this study is the one from the ESS

Conceptual Design Report published in 2012. The HEBT

line has four sections designed and optimised to obtain the

desired beam sizes, phase advances and Twiss parameters

at specific locations. The HEBT starts with a straight un-

derground section (HEBT-S1) which accommodates a col-

limation system and space for additional cryo-modules for

a power and energy upgrade followed by a semi-vertical

bending section denoted HEBT-S2 bringing the beam from

the underground linac tunnel to the target 1.6 m above

ground level. The third horizontal section (HEBT-S3) in-

cludes the expansion system to provide the requested beam

footprint. Finally the last section is a short horizontal sec-

tion for a beam dump to be used for accelerator tuning and

commissioning. Activation induced by particle nuclear in-

teractions in beamline elements represents one of the main

radiation hazards of high-energy accelerators. Exposure

to radiation from induced activation can occur in connec-

tion with handling, transport, machining, welding, chemi-

cal treatment and storage of irradiated items. Because the

accelerator components reveal high induced activation dur-

ing normal operations and after accelerator shutdown, it

is of primary importance to predict correctly their resid-

ual activity before any handling and maintenance proce-

dures. The current paper studies the high radiation level of

HEBT components from back-streaming neutrons coming

from the target.

THE GEANT4 MODEL

GEANT4 [1] provides an extensive set of hadronic

physics models for energies up to 10 - 15 GeV, both for

the intra-nuclear cascade region and for modelling of evap-

oration. There are many different (data based, parameter-

ized and theory-driven) models using different approxima-

tions and each has its own applicable energy range. Monte

Carlo codes usually come with their own physics models

and the user is offered default selections. Due to the vast

range of applications, GEANT4 will not give the user any

default physics models, the user themself has to work out

what models to use for what processes. In order to model

the proton and neutron inelastic interactions in the energy

range relevant for this study, the best physics models avail-

able are the three theoretical intra-nuclear cascade mod-

els provided by GEANT4: INCL/ABLA (Liege) model,

Binary cascade and the Bertini model. The Liege intra-

nuclear cascade model together with the independent evap-

oration/fission code ABLA has been validated against ex-

perimental data for spallation processes in many different

heavy elements [2]. However, the INCL/ABLA validation

results presented at the IAEA benchmark for spallation re-

actions show that, for energies lower than 150 MeV, the

results of the Liege model are not so good as above this

energy [3]. This is because the model does not have pre-

equilibrium: INCL cascade is directly “coupled” to equilib-

rium de-excitation handled by ABLA and therefore it does

not describe well enough low energy reactions (where nu-

clear structure effects start to play their role). Above 150

MeV, INCL/ABLA works very nicely, being one of one

of the best models available. On the other hand, the other

two models available in GEANT4, Bertini and Binary cas-

cade, do incorporate the pre-equilibrium model. The pre-

equilibrium model in GEANT4 has been recently improved

following a validation study against the TARC experiment

data, in order to improve several shortcomings in applying

this model to neutron spallation processes [4]. All these re-

cent developments have been considered and implemented

in our code.

In the simulations presented in this paper, the Bertini

model was selected. For neutron energies below 20 MeV,

the high-precision models were selected. These models use

the ENDF/B-VII [5], JENDL [6], MENDL-2 [7] and other

data libraries [8]. The S(α,β) coefficient which takes into

account the corrected treatment for neutron scattering on

chemically bound elements in the thermal region has also

been implemented in the GEANT4 physics list used for this

study.
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Figure 1: The HEBT-S3 - 2D layout which includes the magnets - quadrupoles (green), dipoles (red) and octupoles (blue),

the fixed collimator (cyan) and the target monolith (including the proton beam window and the target wheel).

RESULTS
The geometry implemented into the code is shown in

Fig. 1. For simplicity, the magnets were assumed to be

made of a homogeneous mixture of Fe and Cu in equal

proportions. The collimator is made of Cu and it is coated

with W.
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Figure 2: Isotopes produced inside the quadrupoles.
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Figure 3: Isotopes produced inside the octupoles.

In order to study the beamline components activation,

the code has been designed to register the production of

any radioactive isotope which decays emitting gamma-rays

and also which has a lifetime longer than 24 hours, since

any isotope which decays in less than 24 hours can be

considered as not posing a safety concern. These iso-

topes are: Be7, Sc46, Ti44, Cr51, Mn54, Fe59, Co56,

Co57, Co58, Co60, Zn65, Se75, Rb84, Sr85, Y88, Zr95,

Nb94, Nb95, Ru106, Cd109, In111, Sn113, Sn125, Sb124,

Sb125, I125, Cs132, Cs134, Cs137, Ba133, Ce139, Ce141,

Ce144, Eu152, Eu154, Gd153, Tb160, Tb161, Tm170,

Yb169, Hf172, Ta182, Os185, Ir192, Au198, Au199,

Hg203, Pb210, Bi207, Th228, Np239, Am241, Am243.

The radioactive decay processes have been added to the

standard physics list provided by GEANT4, such that the

production rate takes into account not only the isotopes

produced by the direct impact of the backscattered neutrons

on various accelerator components, but also the production

of these isotopes following the decay of other isotopes pro-

duced in these interactions. While the accelerated proton

beam is on, this production rates are constant in time, and

for an isotope “i”, it is given by:

dNprod
i

dt
=

Niso

Δt
=

NisoI

Npe
(1)

where Niso is the number of isotopes produced in the sim-

ulation, I is the proton beam current from the accelerator,

Np is the number of protons simulated, and e is the proton

electric charge. The number of isotopes produced inside

the quadrupoles for 3 × 108 incident protons is shown in

Fig. 2. The octupoles magnets are less affected, as shown

in Fig. 3, because they are further away from the spallation

target and hence they are hit by fewer backscattered neu-

trons. As expected, the worst affected is the proton beam

collimator placed in front of the target monolith. The ra-

dioactive isotopes production is shown in Fig. 4 separately

for the main copper volume and the tungsten coating.

Thus, during the beam-on period, the time evolution can

be obtained by combining the production and decay rates:

dNi

dt
(t) =

NisoI

Npe
− λiNi(t) (2)

where λi is the decay constant of isotope “i”.

The solution of Eq. 2, gives the number of isotopes at

any time t during the beam exposure:

Ni(t) =
NisoI

Npeλi
(1− exp(−λit)) (3)

However, after the beam is switched off, following a con-

tinuous exposure for a given time t1, the number of isotopes

after a time t, which includes both the beam on period t1
as well as the beam off period, is given by:

Ni(t) =
NisoI

Npeλi
(1− exp(−λit1))exp(−λi(t− t1)) (4)
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Figure 4: Isotopes produced inside the beam collimator.
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Figure 6: Activity inside the quadrupoles.

The induced activity inside the accelerator elements is

given by Eq. 5.

Ai(t) = λiNi(t) (5)

Considering a beam exposure of 365 days, the induced

activity inside the collimator is shown in Fig. 5 and inside

the quadrupole magnets is shown in Fig. 6.
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