71 research outputs found

    Pharmacological control of the mevalonate pathway: Effect on arterial smooth muscle cell proliferation

    Get PDF
    The mevalonate (MVB) pathway is involved in cell proliferation. We investigated drugs acting at different enzymatic steps on rat aorta smooth muscle cell (SMC) proliferation. Competitive inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase (0.1-10 mu M) dose-dependently decreased (up to 90%) SMC proliferation. This effect was prevented by 100 mu M MVA, 10 mu M all-trans famesol (F-OH) and 5 mu M all-trans geranylgeraniol (GG-OH), precursors of protein prenyl groups, but not by 2-cis GG-OH, precursor of dolichols, squalene and ubiquinone. The same inhibitory effect was obtained with 6-fluoromevalonate (1-50 mu M), an inhibitor of MVA-pyrophosphate decarboxylase. Partial recovery of cell proliferation was possible by all-trans F-OH and all-trans GG-OH, but not MVA. Squalestatin 1 (1-25 mu M), a potent squalene synthase inhibitor, blocked cholesterol synthesis and slightly inhibited (21% decrease) SMC proliferation only at the highest tested concentration. NB-598 (1-10 mu M), a potent squalene epoxidase inhibitor, blocked cholesterol synthesis without affecting SMC proliferation. Finally, the benzodiazepine peptidomimetic BZA-5B (10-100 mu M), a specific inhibitor of protein famesyltransferase, time- and dose-dependently decreased SMC proliferation (up to 62%) after 9 days. This effect of BZA-5B was prevented by MVA and all-trans GG-OH, but not by all-trans F-OH. SMC proliferation was not affected by the closely related compound BZA-7B, which does not inhibit protein farnesyltransferase. Altogether, these findings focus the role of the MVA pathway in cell proliferation and call attention to the involvement of specific isoprenoid metabolites probably through farnesylated and geranylgeranylated proteins, in the control of this cellular event

    The Influence of Meteorology on the Spread of Influenza: Survival Analysis of an Equine Influenza (A/H3N8) Outbreak

    Get PDF
    The influences of relative humidity and ambient temperature on the transmission of influenza A viruses have recently been established under controlled laboratory conditions. The interplay of meteorological factors during an actual influenza epidemic is less clear, and research into the contribution of wind to epidemic spread is scarce. By applying geostatistics and survival analysis to data from a large outbreak of equine influenza (A/H3N8), we quantified the association between hazard of infection and air temperature, relative humidity, rainfall, and wind velocity, whilst controlling for premises-level covariates. The pattern of disease spread in space and time was described using extraction mapping and instantaneous hazard curves. Meteorological conditions at each premises location were estimated by kriging daily meteorological data and analysed as time-lagged time-varying predictors using generalised Cox regression. Meteorological covariates time-lagged by three days were strongly associated with hazard of influenza infection, corresponding closely with the incubation period of equine influenza. Hazard of equine influenza infection was higher when relative humidity was <60% and lowest on days when daily maximum air temperature was 20–25°C. Wind speeds >30 km hour−1 from the direction of nearby infected premises were associated with increased hazard of infection. Through combining detailed influenza outbreak and meteorological data, we provide empirical evidence for the underlying environmental mechanisms that influenced the local spread of an outbreak of influenza A. Our analysis supports, and extends, the findings of studies into influenza A transmission conducted under laboratory conditions. The relationships described are of direct importance for managing disease risk during influenza outbreaks in horses, and more generally, advance our understanding of the transmission of influenza A viruses under field conditions

    The Transcriptome of Trichuris suis – First Molecular Insights into a Parasite with Curative Properties for Key Immune Diseases of Humans

    Get PDF
    Iatrogenic infection of humans with Trichuris suis (a parasitic nematode of swine) is being evaluated or promoted as a biological, curative treatment of immune diseases, such as inflammatory bowel disease (IBD) and ulcerative colitis, in humans. Although it is understood that short-term T. suis infection in people with such diseases usually induces a modified Th2-immune response, nothing is known about the molecules in the parasite that induce this response.As a first step toward filling the gaps in our knowledge of the molecular biology of T. suis, we characterised the transcriptome of the adult stage of this nematode employing next-generation sequencing and bioinformatic techniques. A total of ∼65,000,000 reads were generated and assembled into ∼20,000 contiguous sequences ( = contigs); ∼17,000 peptides were predicted and classified based on homology searches, protein motifs and gene ontology and biological pathway mapping.These analyses provided interesting insights into a number of molecular groups, particularly predicted excreted/secreted molecules (n = 1,288), likely to be involved in the parasite-host interactions, and also various molecules (n = 120) linked to chemokine, T-cell receptor and TGF-β signalling as well as leukocyte transendothelial migration and natural killer cell-mediated cytotoxicity, which are likely to be immuno-regulatory or -modulatory in the infected host. This information provides a conceptual framework within which to test the immunobiological basis for the curative effect of T. suis infection in humans against some immune diseases. Importantly, the T. suis transcriptome characterised herein provides a curated resource for detailed studies of the immuno-molecular biology of this parasite, and will underpin future genomic and proteomic explorations

    The pharmacological control of the mevalonate pathway regulates arterial smooth muscle cell proliferation

    No full text
    The aim of the present study was to analyze the frequency and mechanism of cell death in atherosclerotic plaques with a recent history ( 70% diameter reduction undergoing carotid endarterectomy. In situ tailing and nick translation of fragmented DNA, agarose gel electrophoresis of plaque DNA and electron microscopy were used to identify cell death by apoptosis (programmed cell death) and oncosis. The mean number of cells containing fragmented DNA in the plaques was 12.7 \ub1 3.5% (n = 15). Focal accumulations of cells with DNA fragmentation occurred in the fibrous cap, at sites of rupture, close to lipid deposits and necrosis and was always accompanied by the presence of inflammatory cells. Electrophoretic separation of DNA isolated from part of plaques, where the presence of DNA fragmentation had previously been demonstrated by in situ DNA nick translation, resulted in multiple ladders of 180-200 base pairs characteristic of apoptosis. Electron microscopic analysis revealed presence of cells with morphological signs of degeneration in a frequency even higher than that found by in situ nick translation. Some of these cells had a characteristic apoptotic appearance with condensed chromatin and cytoplasm, but the large majority of the cells had an ultrastructure typical for cells undergoing cell death by oncosis with membrane disruption and swollen, disintegrating organelles. Thus, although apoptosis clearly takes place in atherosclerotic plaques, oncosis appears to be a much more common mechanism for cell death

    The pharmacological control of the mevalonate pathway regulates arterial smooth muscle cell proliferation

    No full text
    none8The aim of the present study was to analyze the frequency and mechanism of cell death in atherosclerotic plaques with a recent history ( 70% diameter reduction undergoing carotid endarterectomy. In situ tailing and nick translation of fragmented DNA, agarose gel electrophoresis of plaque DNA and electron microscopy were used to identify cell death by apoptosis (programmed cell death) and oncosis. The mean number of cells containing fragmented DNA in the plaques was 12.7 ± 3.5% (n = 15). Focal accumulations of cells with DNA fragmentation occurred in the fibrous cap, at sites of rupture, close to lipid deposits and necrosis and was always accompanied by the presence of inflammatory cells. Electrophoretic separation of DNA isolated from part of plaques, where the presence of DNA fragmentation had previously been demonstrated by in situ DNA nick translation, resulted in multiple ladders of 180-200 base pairs characteristic of apoptosis. Electron microscopic analysis revealed presence of cells with morphological signs of degeneration in a frequency even higher than that found by in situ nick translation. Some of these cells had a characteristic apoptotic appearance with condensed chromatin and cytoplasm, but the large majority of the cells had an ultrastructure typical for cells undergoing cell death by oncosis with membrane disruption and swollen, disintegrating organelles. Thus, although apoptosis clearly takes place in atherosclerotic plaques, oncosis appears to be a much more common mechanism for cell death.noneA. Corsini; L. Arnaboldi; P. McGeady; M.H. Gelb; P. Quarato; N. Ferri; R. Paoletti; R. FumagalliA., Corsini; L., Arnaboldi; P., Mcgeady; M. H., Gelb; P., Quarato; Ferri, Nicola; R., Paoletti; R., Fumagall

    Pharmacological control of the mevalonate pathway in the regulation of arterial myocyte proliferation

    No full text
    Preincubation with interleukin-2 (IL-2), a T cell-derived cytokine, enhanced the increase in intracellular Ca2+ ([Ca2+ ](i)) induced by angiotensin II (AII) in vascular smooth muscle cells (VSMC). IL-2 itself did not affect the basal [Ca2+](i) level or the maximal response of [Ca2+](i) increase induced by AII. Furthermore, IL-2-induced enhancement was not observed in the absence of extracellular Ca2+ suggesting that IL-2 enhances Ca2+ influx induced by AII. IL-2 also enhanced the stimulation of DNA synthesis induced by AII, although IL-2 alone did not stimulate DNA synthesis. Genistein, an inhibitor of protein tyrosine kinases, significantly inhibited IL-2-induced enhancement of both Ca2+ influx and DNA synthesis induced by AII. A neutralizing antibody against heparin-binding epidermal growth factor-like growth factor (HB-EGF) partially inhibited IL-2-induced enhancement of DNA synthesis induced by AII. These findings suggest that autocrine HB-EGF is partially involved in the mechanism of IL-2-induced enhancement of DNA synthesis. On the other hand IL-2 stimulated both glycosaminoglycan (GAG) and prostacyclin syntheses and enhanced the stimulation of both GAG and prostacyclin syntheses induced by AII. Therefore, IL-2 may play important roles in the pathogenesis of atherosclerosis and vascular disease by modulating the responsiveness to AII in VSMC

    Pharmacological control of the mevalonate pathway in the regulation of arterial myocyte proliferation

    No full text
    none9Preincubation with interleukin-2 (IL-2), a T cell-derived cytokine, enhanced the increase in intracellular Ca2+ ([Ca2+ ](i)) induced by angiotensin II (AII) in vascular smooth muscle cells (VSMC). IL-2 itself did not affect the basal [Ca2+](i) level or the maximal response of [Ca2+](i) increase induced by AII. Furthermore, IL-2-induced enhancement was not observed in the absence of extracellular Ca2+ suggesting that IL-2 enhances Ca2+ influx induced by AII. IL-2 also enhanced the stimulation of DNA synthesis induced by AII, although IL-2 alone did not stimulate DNA synthesis. Genistein, an inhibitor of protein tyrosine kinases, significantly inhibited IL-2-induced enhancement of both Ca2+ influx and DNA synthesis induced by AII. A neutralizing antibody against heparin-binding epidermal growth factor-like growth factor (HB-EGF) partially inhibited IL-2-induced enhancement of DNA synthesis induced by AII. These findings suggest that autocrine HB-EGF is partially involved in the mechanism of IL-2-induced enhancement of DNA synthesis. On the other hand IL-2 stimulated both glycosaminoglycan (GAG) and prostacyclin syntheses and enhanced the stimulation of both GAG and prostacyclin syntheses induced by AII. Therefore, IL-2 may play important roles in the pathogenesis of atherosclerosis and vascular disease by modulating the responsiveness to AII in VSMC.noneA. Corsini; L. Arnaboldi; P. McGeady; M.H. Gelb; P. Quarato; C. Tagliabue; N. Ferri; R. Paoletti; R. FumagalliA., Corsini; L., Arnaboldi; P., Mcgeady; M. H., Gelb; P., Quarato; C., Tagliabue; Ferri, Nicola; R., Paoletti; R., Fumagall
    • …
    corecore