735 research outputs found

    Observing Supernova 1987A with the Refurbished Hubble Space Telescope

    Get PDF
    Observations with the Hubble Space Telescope (HST), conducted since 1990, now offer an unprecedented glimpse into fast astrophysical shocks in the young remnant of supernova 1987A. Comparing observations taken in 2010 using the refurbished instruments on HST with data taken in 2004, just before the Space Telescope Imaging Spectrograph failed, we find that the Ly-a and H-a lines from shock emission continue to brighten, while their maximum velocities continue to decrease. We observe broad blueshifted Ly-a, which we attribute to resonant scattering of photons emitted from hotspots on the equatorial ring. We also detect NV~\lambda\lambda 1239,1243 A line emission, but only to the red of Ly-A. The profiles of the NV lines differ markedly from that of H-a, suggesting that the N^{4+} ions are scattered and accelerated by turbulent electromagnetic fields that isotropize the ions in the collisionless shock.Comment: Science, accepted. Science Express, 02 Sept 2010. 5 figures. Supporting online material can be found at http://www.sciencemag.org/cgi/content/full/sci;science.1192134/DC

    A Chandra View of The Morphological And Spectral Evolution of Supernova Remnant 1987A

    Full text link
    We present an update on the results of our monitoring observations of the X-ray remnant of supernova (SN) 1987A with the {\it Chandra X-Ray Observatory}. As of 2002 December, we have performed a total of seven observations of SN 1987A. The high angular resolution images from the latest data reveal developments of new X-ray bright spots in the northwestern and the southwestern portions of the remnant as well as changes on the eastern side. The latest 0.5-2 keV band flux (fXf_X ∼\sim 6 ×\times 10−13^{-13} ergs cm−2^{-2} s−1^{-1}) is four times brighter than three years earlier. The overall X-ray emission is primarily from the blast wave shock with kTkT ∼\sim 2.4 keV. As the blast wave approaches the dense circumstellar material, the contribution from the decelerated slow shock (kTkT ∼\sim 0.22 keV) to the observed X-ray emission is becoming significant. The increase of this slow shock contribution over the last two years is particularly noticeable in the western half of the remnant. These results indicate that the shock front is now reaching the main body of the inner circumstellar ring. Based on the best-fit two-shock spectral model, we derive approximate densities of the X-ray-emitting regions (nen_e ∼\sim 235 cm−3^{-3} for the fast shock and nen_e ∼\sim 7500 cm−3^{-3} for the slow shock). We obtain an upper limit on the observed X-ray luminosity of any embedded point source (LXL_X ≤\le 1.5 ×\times 1034^{34} ergs s−1^{-1}) in the 2−-10 keV band. The X-ray remnant continues to expand linearly at a rate of 4167 km s−1^{-1}.Comment: 22 pages (ApJ preprint style), 7 Figures, Accepted by ApJ (scheduled on July 20, 2004), for high-quality Fig 1 and Fig 2, please contact [email protected]

    Notes on Recent Cases

    Get PDF
    Notes on recent cases by J. S. Angelino, Marc Wonderlin, W. S. McCray, John P. Berscheid, J. J. Canty, J. J. Lyons, R. C. Kuehl, D. M. Donahue, M. E. McGcogehgan, G. L. Housley, Thomas J. Jones, Jr., and F. Earl Lamboley

    Chandra observations of SN 1987A: the soft X-ray light curve revisited

    Get PDF
    We report on the present stage of SN 1987A as observed by the Chandra X-ray Observatory. We reanalyze published Chandra observations and add three more epochs of Chandra data to get a consistent picture of the evolution of the X-ray fluxes in several energy bands. We discuss the implications of several calibration issues for Chandra data. Using the most recent Chandra calibration files, we find that the 0.5-2.0 keV band fluxes of SN 1987A have increased by ~6 x 10 ^-13 erg s^-1 cm^-2 per year since 2009. This is in contrast with our previous result that the 0.5-2.0 keV light curve showed a sudden flattening in 2009. Based on our new analysis, we conclude that the forward shock is still in full interaction with the equatorial ring.Comment: Accepted for publication by ApJ, 7 pages, 5 figure

    Discussion of Recent Decisions

    Get PDF

    The morphology of the ejecta in Supernova 1987A: a study over time and wavelength

    Get PDF
    We present a study of the morphology of the ejecta in Supernova 1987A based on images and spectra from the HST as well as integral field spectroscopy from VLT/SINFONI. The HST observations were obtained between 1994 - 2011 and primarily probe the outer hydrogen-rich zones of the ejecta. The SINFONI observations were obtained in 2005 and 2011 and instead probe the [Si I]/[Fe II] emission from the inner regions. We find a strong temporal evolution of the morphology in the HST images, from a roughly elliptical shape before ~5,000 days, to a more irregular, edge-brightened morphology thereafter. This transition is a natural consequence of the change in the dominant energy source powering the ejecta, from radioactive decay before ~5,000 days to X-ray input from the circumstellar interaction thereafter. The [Si I]/[Fe II] images display a more uniform morphology, which may be due to a remaining significant contribution from radioactivity in the inner ejecta and the higher abundance of these elements in the core. Both the H-alpha and the [Si I]/[Fe II] line profiles show that the ejecta are distributed fairly close to the plane of the inner circumstellar ring, which is assumed to define the rotational axis of the progenitor. The H-alpha emission extends to higher velocities than [Si I]/[Fe II] as expected. There is no clear symmetry axis for all the emission and we are unable to model the ejecta distribution with a simple ellipsoid model with a uniform distribution of dust. Instead, we find that the emission is concentrated to clumps and that the emission is distributed somewhat closer to the ring in the north than in the south. This north-south asymmetry may be partially explained by dust absorption. We compare our results with explosion models and find some qualitative agreement, but note that the observations show a higher degree of large-scale asymmetry.Comment: Accepted for publication in Ap
    • …
    corecore