34 research outputs found

    A global-scale screening of non-native aquatic organisms to identify potentially invasive species under current and future climate conditions

    Get PDF
    The threat posed by invasive non-native species worldwide requires a global approach to identify which introduced species are likely to pose an elevated risk of impact to native species and ecosystems. To inform policy, stakeholders and management decisions on global threats to aquatic ecosystems, 195 assessors representing 120 risk assessment areas across all six inhabited continents screened 819 non-native species from 15 groups of aquatic organisms (freshwater, brackish, marine plants and animals) using the Aquatic Species Invasiveness Screening Kit. This multi-lingual decision-support tool for the risk screening of aquatic organisms provides assessors with risk scores for a species under current and future climate change conditions that, following a statistically based calibration, permits the accurate classification of species into high-, medium-and low-risk categories under current and predicted climate conditions. The 1730 screenings undertaken encompassed wide geographical areas (regions, political entities, parts thereof, water bodies, river basins, lake drainage basins, and marine regions), which permitted thresholds to be identified for almost all aquatic organismal groups screened as well as for tropical, temperate and continental climate classes, and for tropical and temperate marine ecoregions. In total, 33 species were identified as posing a 'very high risk' of being or becoming invasive, and the scores of several of these species under current climate increased under future climate conditions, primarily due to their wide thermal tolerances. The risk thresholds determined for taxonomic groups and climate zones provide a basis against which area-specific or climate-based calibrated thresholds may be interpreted. In turn, the risk rankings help decision-makers identify which species require an immediate 'rapid' management action (e.g. eradication, control) to avoid or mitigate adverse impacts, which require a full risk assessment, and which are to be restricted or banned with regard to importation and/or sale as ornamental or aquarium/fishery enhancement. Decision support tools AS-ISK Hazard identification Non-native species Risk analysis Climate changepublishedVersio

    A global-scale screening of non-native aquatic organisms to identify potentially invasive species under current and future climate conditions

    Get PDF
    The threat posed by invasive non-native species worldwide requires a global approach to identify which introduced species are likely to pose an elevated risk of impact to native species and ecosystems. To inform policy, stakeholders and management decisions on global threats to aquatic ecosystems, 195 assessors representing 120 risk assessment areas across all six inhabited continents screened 819 non-native species from 15 groups of aquatic organisms (freshwater, brackish, marine plants and animals) using the Aquatic Species Invasiveness Screening Kit. This multi-lingual decision-support tool for the risk screening of aquatic organisms provides assessors with risk scores for a species under current and future climate change conditions that, following a statistically based calibration, permits the accurate classification of species into high-, medium- and low-risk categories under current and predicted climate conditions. The 1730 screenings undertaken encompassed wide geographical areas (regions, political entities, parts thereof, water bodies, river basins, lake drainage basins, and marine regions), which permitted thresholds to be identified for almost all aquatic organismal groups screened as well as for tropical, temperate and continental climate classes, and for tropical and temperate marine ecoregions. In total, 33 species were identified as posing a ‘very high risk’ of being or becoming invasive, and the scores of several of these species under current climate increased under future climate conditions, primarily due to their wide thermal tolerances. The risk thresholds determined for taxonomic groups and climate zones provide a basis against which area-specific or climate-based calibrated thresholds may be interpreted. In turn, the risk rankings help decision-makers identify which species require an immediate ‘rapid’ management action (e.g. eradication, control) to avoid or mitigate adverse impacts, which require a full risk assessment, and which are to be restricted or banned with regard to importation and/or sale as ornamental or aquarium/fishery enhancement.publishedVersio

    Honey bees and climate explain viral prevalence in wild bee communities on a continental scale

    No full text
    Viruses are omnipresent, yet the knowledge on drivers of viral prevalence in wild host populations is often limited. Biotic factors, such as sympatric managed host species, as well as abiotic factors, such as climatic variables, are likely to impact viral prevalence. Managed and wild bees, which harbor several multi-host viruses with a mostly fecal-oral between-species transmission route, provide an excellent system with which to test for the impact of biotic and abiotic factors on viral prevalence in wild host populations. Here we show on a continental scale that the prevalence of three broad host viruses: the AKI-complex (Acute bee paralysis virus, Kashmir bee virus and Israeli acute paralysis virus), Deformed wing virus, and Slow bee paralysis virus in wild bee populations (bumble bees and solitary bees) is positively related to viral prevalence of sympatric honey bees as well as being impacted by climatic variables. The former highlights the need for good beekeeping practices, including Varroa destructor management to reduce honey bee viral infection and hive placement. Furthermore, we found that viral prevalence in wild bees is at its lowest at the extreme ends of both temperature and precipitation ranges. Under predicted climate change, the frequency of extremes in precipitation and temperature will continue to increase and may hence impact viral prevalence in wild bee communities
    corecore