20 research outputs found

    Adding tsetse control to medical activities contributes to decreasing transmission of sleeping sickness in the Mandoul focus (Chad)

    Get PDF
    Background Gambian sleeping sickness or HAT (human African trypanosomiasis) is a neglected tropical disease caused by Trypanosoma brucei gambiense transmitted by riverine species of tsetse. A global programme aims to eliminate the disease as a public health problem by 2020 and stop transmission by 2030. In the South of Chad, the Mandoul area is a persistent focus of Gambian sleeping sickness where around 100 HAT cases were still diagnosed and treated annually until 2013. Pre-2014, control of HAT relied solely on case detection and treatment, which lead to a gradual decrease in the number of cases of HAT due to annual screening of the population. Methods Because of the persistence of transmission and detection of new cases, we assessed whether the addition of vector control to case detection and treatment could further reduce transmission and consequently, reduce annual incidence of HAT in Mandoul. In particular, we investigated the impact of deploying ‘tiny targets’ which attract and kill tsetse. Before tsetse control commenced, a census of the human population was conducted and their settlements mapped. A pre-intervention survey of tsetse distribution and abundance was implemented in November 2013 and 2600 targets were deployed in the riverine habitats of tsetse in early 2014, 2015 and 2016. Impact on tsetse and on the incidence of sleeping sickness was assessed through nine tsetse monitoring surveys and four medical surveys of the human population in 2014 and 2015. Mathematical modelling was used to assess the relative impact of tsetse control on incidence compared to active and passive screening. Findings The census indicated that a population of 38674 inhabitants lived in the vicinity of the Mandoul focus. Within this focus in November 2013, the vector is Glossina fuscipes fuscipes and the mean catch of tsetse from traps was 0.7 flies/trap/day (range, 0-26). The catch of tsetse from 44 sentinel biconical traps declined after target deployment with only five tsetse being caught in nine surveys giving a mean catch of 0.005 tsetse/trap/day. Modelling indicates that 70.4% (95% CI: 51-95%) of the reduction in reported cases between 2013 and 2015 can be attributed to vector control with the rest due to medical intervention. Similarly tiny targets are estimated to have reduced new infections dramatically with 62.8% (95% CI: 59–66%) of the reduction due to tsetse control, and 8.5% (95% 8–9%) to enhanced passive detection. Model predictions anticipate that elimination as a public health problem could be achieved by 2018 in this focus if vector control and screening continue at the present level and, furthermore, there may have been virtually no transmission since 2015. Conclusion This work shows that tiny targets reduced the numbers of tsetse in this focus in Chad, which may have interrupted transmission and the combination of tsetse control to medical detection and treatment has played a major role in reducing in HAT incidence in 2014 and 2015

    Insecticide resistance in Anopheles gambiae from south-western Chad, Central Africa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Indoor residual spraying and insecticide-treated nets (ITN) are essential components of malaria vector control in Africa. Pyrethroids are the only recommended compounds for nets treatment because they are fast-acting insecticides with low mammalian toxicity. However, there is growing concern that pyrethroid resistance may threaten the sustainability of ITN scaling-up programmes. Here, insecticide susceptibility was investigated in <it>Anopheles gambiae </it>sensu lato from an area of large scale ITN distribution programme in south-western Chad.</p> <p>Methods</p> <p>Susceptibility to 4% DDT, 0.05% deltamethrin, 0.75% permethrin, 0.1% bendiocarb and 5% malathion was assessed using the WHO standard procedures for adult mosquitoes. Tests were carried out with two to four days-old, non-engorged female mosquitoes. The <it>An. gambiae </it>Kisumu strain was used as a reference. Knockdown effect was recorded every 5 min and mortality scored 24 h after exposure. Mosquitoes were identified to species and molecular form by PCR-RFLP and genotypes at the <it>kdr </it>locus were determined in surviving specimens by Hot Oligonucleotide Ligation Assay (HOLA).</p> <p>Results</p> <p>During this survey, full susceptibility to malathion was recorded in all samples. Reduced susceptibility to bendiocarb (mortality rate of 96.1%) was found in one sample out of nine assayed. Increased tolerance to pyrethroids was detected in most samples (8/9) with mortality rates ranging from 70.2 to 96.6% for deltamethrin and from 26.7 to 96.3% for permethrin. Pyrethroid tolerance was not associated with a significant increase of knock-down times. <it>Anopheles arabiensis </it>was the predominant species of the <it>An. gambiae </it>complex in the study area, representing 75 to 100% of the samples. Screening for <it>kdr </it>mutations detected the L1014F mutation in 88.6% (N = 35) of surviving <it>An</it>. <it>gambiae </it>sensu stricto S form mosquitoes. All surviving <it>An. arabiensis </it>(N = 49) and M form <it>An</it>. <it>gambiae </it>s.s. (N = 1) carried the susceptible allele.</p> <p>Conclusion</p> <p>This first investigation of malaria vector susceptibility to insecticides in Chad revealed variable levels of resistance to pyrethroid insecticides (permethrin and deltamethrin) in most <it>An</it>. <it>gambiae </it>s.l. populations. Resistance was associated with the L1014F <it>kdr </it>mutation in the S form of <it>An. gambiae </it>s.s.. Alternative mechanisms, probably of metabolic origin are involved in <it>An. arabiensis</it>. These results emphasize the crucial need for insecticide resistance monitoring and in-depth investigation of resistance mechanisms in malaria vectors in Chad. The impact of reduced susceptibility to pyrethroids on ITN efficacy should be further assessed.</p

    Health economic evaluation of strategies to eliminate gambiense human African trypanosomiasis in the Mandoul disease focus of Chad

    Get PDF
    Human African trypanosomiasis, caused by the gambiense subspecies of Trypanosoma brucei (gHAT), is a deadly parasitic disease transmitted by tsetse. Partners worldwide have stepped up efforts to eliminate the disease, and the Chadian government has focused on the previously high-prevalence setting of Mandoul. In this study, we evaluate the economic efficiency of the intensified strategy that was put in place in 2014 aimed at interrupting the transmission of gHAT, and we make recommendations on the best way forward based on both epidemiological projections and cost-effectiveness. In our analysis, we use a dynamic transmission model fit to epidemiological data from Mandoul to evaluate the cost-effectiveness of combinations of active screening, improved passive screening (defined as an expansion of the number of health posts capable of screening for gHAT), and vector control activities (the deployment of Tiny Targets to control the tsetse vector). For cost-effectiveness analyses, our primary outcome is disease burden, denominated in disability-adjusted life-years (DALYs), and costs, denominated in 2020 US.AlthoughactiveandpassivescreeninghaveenabledmorerapiddiagnosisandaccessibletreatmentinMandoul,theadditionofvectorcontrolprovidedgoodvalueformoney(atlessthan. Although active and passive screening have enabled more rapid diagnosis and accessible treatment in Mandoul, the addition of vector control provided good value-for-money (at less than 750/DALY averted) which substantially increased the probability of reaching the 2030 elimination target for gHAT as set by the World Health Organization. Our transmission modelling and economic evaluation suggest that the gains that have been made could be maintained by passive screening. Our analysis speaks to comparative efficiency, and it does not take into account all possible considerations; for instance, any cessation of ongoing active screening should first consider that substantial surveillance activities will be critical to verify the elimination of transmission and to protect against the possible importation of infection from neighbouring endemic foci

    Malaria vectors and transmission dynamics in Goulmoun, a rural city in south-western Chad

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Knowledge of some baseline entomological data such as Entomological Inoculation Rates (EIR) is crucially needed to assess the epidemiological impact of malaria control activities directed either against parasites or vectors. In Chad, most published surveys date back to the 1960's. In this study, anopheline species composition and their relation to malaria transmission were investigated in a dry Sudanian savannas area of Chad.</p> <p>Methods</p> <p>A 12-month longitudinal survey was conducted in the irrigated rice-fields area of Goulmoun in south western Chad. Human landing catches were performed each month from July 2006 to June 2007 in three compounds (indoors and outdoors) and pyrethrum spray collections were conducted in July, August and October 2006 in 10 randomly selected rooms. Mosquitoes belonging to the <it>Anopheles gambiae </it>complex and to the <it>An. funestus </it>group were identified by molecular diagnostic tools. <it>Plasmodium falciparum </it>infection and blood meal sources were detected by ELISA.</p> <p>Results</p> <p>Nine anopheline species were collected by the two sampling methods. The most aggressive species were <it>An. arabiensis </it>(51 bites/human/night), <it>An. pharoensis </it>(12.5 b/h/n), <it>An. funestus </it>(1.5 b/h/n) and <it>An. ziemanni </it>(1.3 b/h/n). The circumsporozoite protein rate was 1.4% for <it>An. arabiensis</it>, 1.4% for <it>An. funestus</it>, 0.8% for <it>An. pharoensis </it>and 0.5% for <it>An. ziemanni</it>. Malaria transmission is seasonal, lasting from April to December. However, more than 80% of the total EIR was concentrated in the period from August to October. The overall annual EIR was estimated at 311 bites of infected anophelines/human/year, contributed mostly by <it>An. arabiensis </it>(84.5%) and <it>An. pharoensis </it>(12.2%). <it>Anopheles funestus </it>and <it>An. ziemanni </it>played a minor role. Parasite inoculation occurred mostly after 22:00 hours but around 20% of bites of infected anophelines were distributed earlier in the evening.</p> <p>Conclusion</p> <p>The present study revealed the implication of <it>An. pharoensis </it>in malaria transmission in the irrigated rice fields of Goulmoun, complementing the major role played by <it>An. arabiensis</it>. The transmission period did not depend upon irrigation. Correct use of insecticide treated nets in this area may be effective for vector control although additional protective measures are needed to prevent pre-bedtime exposure to the bites of infected anophelines.</p

    Concomitant transmission of human and animal trypanosomoses: Mandoul focus in Chad

    No full text
    Trypanosomosis is a vector-borne disease which affects both humans and animals. It is cyclically transmitted by tsetse flies and is caused by Trypanosoma sp. Although the disease is mainly endemic where its vectors are present, endemic areas where transmission of both forms of the disease coexist have seldom been studied. During our study, epidemiological and entomological surveys were carried out, followed by the analysis of collected samples by the polymerase chain reaction (PCR). Out of 13,410 persons examined, 132 sleeping sickness cases were diagnosed. After examination of 144 cattle samples by PCR, 33 were found infected by either Trypanosoma brucei (39%) or T. vivax (55%), or exhibited a co-infection (two animals). Three insect families were trapped at variable densities (Glossinidae, Stomoxyinae, and Tabanidae). Glossina fuscipes fuscipes was only caught in the southern part of the focus, and the highest apparent density per trap per day (ADT) of 0.56 was found in the gallery forest bordering the villages where the highest number of human African trypanosomosis was diagnosed. Tabanids were caught in all investigated areas but the highest ADT, i.e. 15.55, was observed in the northern part of the focus. No Stomoxys sp. was found in the prospected area located farthest from the river. The identification of trypanosomes in people and in cattle, and the presence of the cyclical vector as well as mechanical vectors, confirmed endemic human and animal trypanosomoses in the focus. Combatting vectors with a strategy common to both forms of the disease is crucial to control them sustainably

    Capital Social et Entrepreneuriat au Cameroun

    No full text
    Face aux contraintes institutionnelles, l'entrepreneuriat camerounais emprunte, aussi bien au niveau de la grande entreprise que de la Petite et Moyenne Entreprise (PME), des stratégies de survie, d'expansion et de développement qui reposent essentiellement sur l'usage du capital social, défini comme tout aspect de structure sociale qui crée de la valeur et facilite les actions des individus composant cette structure sociale (Coleman, 1990)
    corecore