291 research outputs found
Study of a Large NaI(Tl) Crystal
Using a narrow band positron beam, the response of a large high-resolution
NaI(Tl) crystal to an incident positron beam was measured. It was found that
nuclear interactions cause the appearance of additional peaks in the low energy
tail of the deposited energy spectrum
Precision Measurement of the π+→e+νe Branching Ratio in the PIENU Experiment
The PIENU experiment at TRIUMF aims to measure the branching ratio of the pion decay modes Rπ=[π+→e+νe(γ)]/[π+→μ+νμ(γ)] with precision of <0.1%.
Precise measurement of RÏ€ provides a stringent test of electron-muon universality in weak interactions. The current status of the PIENU experiment and future prospects are presented
The viscosity of R32 and R125 at saturation
This paper reports new measurements of the viscosity of R32 and R125, in both the liquid and the vapor phase, over the temperature range 220 to 343 K near the saturation line. The measurements in both liquid and vapor phases have been carried out with a vibrating-wire viscometer calibrated with respect to standard reference values of viscosity. It is estimated that the uncertainty of the
present viscosity data is one of 0.5-1%, being limited partly by the accuracy of
the available density data. The experimental data have been represented by polynomial functions of temperature for the purposes of interpolation
Status of the TRIUMF PIENU Experiment
The PIENU experiment at TRIUMF aims to measure the pion decay branching ratio
with precision % to provide a sensitive test of electron-muon
universality in weak interactions. The current status of the PIENU experiment
is presented.Comment: Talk presented CIPANP2015. 8 pages, LaTeX, 4 eps figure
Improved Search for Heavy Neutrinos in the Decay
A search for massive neutrinos has been made in the decay . No evidence was found for extra peaks in the positron energy spectrum
indicative of pion decays involving massive neutrinos (). Upper limits (90 \% C.L.) on the neutrino mixing matrix element
in the neutrino mass region 60--135 MeV/ were set, which are
%representing an order of magnitude improvement over previous results
Spectroscopy Apparatus for the Measurement of The Hyperfine Structure of Antihydrogen
The ASACUSA CUSP collaboration at the Antiproton Decelerator (AD) of CERN is
planning to measure the ground-state hyperfine splitting of antihydrogen using
an atomic spectroscopy beamline. We describe here the latest developments on
the spectroscopy apparatus developed to be coupled to the antihydrogen
production setup (CUSP).Comment: Proceedings of the 11th International Conference on Low Energy
Antiproton Physics (LEAP 2013) held in Uppsala, Sweden, 10 to 15 June, 201
Hyperfine spectroscopy of hydrogen and antihydrogen in ASACUSA
The ASACUSA collaboration at the Antiproton Decelerator of CERN aims at a
precise measurement of the antihydrogen ground-state hyperfine structure as a
test of the fundamental CPT symmetry. A beam of antihydrogen atoms is formed in
a CUSP trap, undergoes Rabi-type spectroscopy and is detected downstream in a
dedicated antihydrogen detector. In parallel measurements using a polarized
hydrogen beam are being performed to commission the spectroscopy apparatus and
to perform measurements of parameters of the Standard Model Extension (SME).
The current status of antihydrogen spectroscopy is reviewed and progress of
ASACUSA is presented.Comment: Proceedings of the 7th International Syposium on Symmetries in
Subatomic Physics SSP2018, Aachen (Germany), 10 - 15 Jun 2018. Corrected
error in Fig. 1, updated caption, add titles to reference
- …