1,035 research outputs found

    Modal decomposition of a propagating matter wave via electron ptychography

    Get PDF
    We employ ptychography, a phase-retrieval imaging technique, to show experimentally for the first time that a partially coherent high-energy matter (electron) wave emanating from an extended source can be decomposed into a set of mutually independent modes of minimal rank. Partial coherence significantly determines the optical transfer properties of an electron microscope and so there has been much work on this subject. However, previous studies have employed forms of interferometry to determine spatial coherence between discrete points in the wavefield. Here we use the density matrix to derive a formal quantum mechanical description of electron ptychography and use it to measure a full description of the spatial coherence of a propagating matter wavefield, at least to the within the fundamental uncertainties of the measurements we can obtain

    Multi-slice ptychographic tomography

    Get PDF
    Ptychography is a form of Coherent Diffractive Imaging, where diffraction patterns are processed by iterative algorithms to recover an image of a specimen. Although mostly applied in two dimensions, ptychography can be extended to produce three dimensional images in two ways: via multi-slice ptychography or ptychographic tomography. Ptychographic tomography relies on 2D ptychography to supply projections to conventional tomographic algorithms, whilst multi-slice ptychography uses the redundancy in ptychographic data to split the reconstruction into a series of axial slices. Whilst multi-slice ptychography can handle multiple-scattering thick specimens and has a much smaller data requirement than ptychographic tomography, its depth resolution is relatively poor. Here we propose an imaging modality that combines the benefits of the two approaches, enabling isotropic 3D resolution imaging of thick specimens with a small number of angular measurements. Optical experiments validate our proposed method

    WASP: weighted average of sequential projections for ptychographic phase retrieval

    Get PDF
    We introduce the weighted average of sequential projections, or WASP, an algorithm for ptychography. Using both simulations and real-world experiments, we test this new approach and compare performance against several alternative algorithms. These tests indicate that WASP effectively combines the benefits of its competitors, with a rapid initial convergence rate, robustness to noise and poor initial conditions, a small memory footprint, easy tuning, and the ability to reach a global minimum when provided with noiseless data. We also show how WASP can be parallelised to split operation across several different computation nodes

    Characterizing a spatial light modulator using ptychography

    Get PDF
    Ptychography is used to characterize the phase response of a spatial light modulator (SLM). We use the technique to measure and correct the optical curvature and the gamma curve of the device. Ptychography’s unique ability to extend field of view is then employed to test performance by mapping the phase profile generated by a test image to subpixel resolution over the entire active region of the SLM

    Statistics of selectively neutral genetic variation

    Full text link
    Random models of evolution are instrumental in extracting rates of microscopic evolutionary mechanisms from empirical observations on genetic variation in genome sequences. In this context it is necessary to know the statistical properties of empirical observables (such as the local homozygosity for instance). Previous work relies on numerical results or assumes Gaussian approximations for the corresponding distributions. In this paper we give an analytical derivation of the statistical properties of the local homozygosity and other empirical observables assuming selective neutrality. We find that such distributions can be very non-Gaussian.Comment: 4 pages, 4 figure
    • …
    corecore