34 research outputs found

    Association of Spermatogenic Failure with the b2/b3 Partial AZFc Deletion

    Get PDF
    Infertility affects around 1 in 10 men and in most cases the cause is unknown. The Y chromosome plays an important role in spermatogenesis and specific deletions of this chromosome, the AZF deletions, are associated with spermatogenic failure. Recently partial AZF deletions have been described but their association with spermatogenic failure is unclear. Here we screened a total of 339 men with idiopathic spermatogenic failure, and 256 normozoospermic ancestry-matched men for chromosome microdeletions including AZFa, AZFb, AZFc, and the AZFc partial deletions (gr/gr, b1/b3 and b2/b3)

    Lack of Association between Genetic Polymorphisms in Enzymes Associated with Folate Metabolism and Unexplained Reduced Sperm Counts

    Get PDF
    BACKGROUND: The metabolic pathway of folate is thought to influence DNA stability either by inducing single/double stranded breaks or by producing low levels of S-adenosyl-methionine leading to abnormal gene expression and chromosome segregation. Polymorphisms in the genes encoding enzymes in the folate metabolism pathway show distinct geographic and/or ethnic variations and in some cases have been linked to disease. Notably, the gene Methylenetetrahydrofolate reductase (MTHFR) in which the homozygous (TT) state of the polymorphism c.665C>T (p.A222V) is associated with reduced specific activity and increased thermolability of the enzyme causing mild hyperhomocysteinemia. Recently several studies have suggested that men carrying this polymorphism may be at increased risk to develop infertility. METHODOLOGY/PRINCIPAL FINDINGS: We have tested this hypothesis in a case/control study of ethnic French individuals. We examined the incidence of polymorphisms in the genes MTHFR (R68Q, A222V and E429A), Methionine synthase reductase MTRR; (I22M and S175L) and Cystathionine beta-synthase (CBS; G307S). The case population consisted of DNA samples from men with unexplained azoospermia (n = 70) or oligozoospermia (n = 182) and the control population consisted of normospermic and fertile men (n = 114). We found no evidence of an association between the incidence of any of these variants and reduced sperm counts. In addition haplotype analysis did not reveal differences between the case and control populations. CONCLUSIONS/SIGNIFICANCE: We could find no evidence for an association between reduced sperm counts and polymorphisms in enzymes involved in folate metabolism in the French population

    The AZFc region of the Y chromosome: at the crossroads between genetic diversity and male infertility

    Get PDF
    BACKGROUND: The three azoospermia factor (AZF) regions of the Y chromosome represent genomic niches for spermatogenesis genes. Yet, the most distal region, AZFc, is a major generator of large-scale variation in the human genome. Determining to what extent this variability affects spermatogenesis is a highly contentious topic in human reproduction. METHODS: In this review, an extensive characterization of the molecular mechanisms responsible for AZFc genotypical variation is undertaken. Such data are complemented with the assessment of the clinical consequences for male fertility imputable to the different AZFc variants. For this, a critical re-evaluation of 23 association studies was performed in order to extract unifying conclusions by curtailing methodological heterogeneities. RESULTS: Intrachromosomal homologous recombination mechanisms, either crossover or non-crossover based, are the main drivers for AZFc genetic diversity. In particular, rearrangements affecting gene dosage are the most likely to introduce phenotypical disruptions in the spermatogenic profile. In the specific cases of partial AZFc deletions, both the actual existence and the severity of the spermatogenic defect are dependent on the evolutionary background of the Y chromosome. CONCLUSIONS: AZFc is one of the most genetically dynamic regions in the human genome. This property may serve as counter against the genetic degeneracy associated with the lack of a meiotic partner. However, such strategy comes at a price: some rearrangements represent a risk factor or a de-facto causative agent of spermatogenic disruption. Interestingly, this precarious balance is modulated, among other yet unknown factors, by the evolutionary history of the Y chromosome

    Epigenetics and male reproduction: the consequences of paternal lifestyle on fertility, embryo development, and children lifetime health

    Full text link

    Copy number variation in the human Y chromosome in the UK population

    Get PDF
    We have assessed copy number variation (CNV) in the male-specific part of the human Y chromosome discovered by array comparative genomic hybridization (array-CGH) in 411 apparently healthy UK males, and validated the findings using SNP genotype intensity data available for 149 of them. After manual curation taking account of the complex duplicated structure of Y-chromosomal sequences, we discovered 22 curated CNV events considered validated or likely, mean 0.93 (range 0–4) per individual. 16 of these were novel. Curated CNV events ranged in size from <1 kb to >3 Mb, and in frequency from 1/411 to 107/411. Of the 24 protein-coding genes or gene families tested, nine showed CNV. These included a large duplication encompassing the AMELY and TBL1Y genes that probably has no phenotypic effect, partial deletions of the TSPY cluster and AZFc region that may influence spermatogenesis, and other variants with unknown functional implications, including abundant variation in the number of RBMY genes and/or pseudogenes, and a novel complex duplication of two segments overlapping the AZFa region and including the 3′ end of the UTY gene

    Sequence family variant loss from the AZFc interval of the human Y chromosome, but not gene copy loss, is strongly associated with male infertility

    No full text
    Background: Complete deletion of the complete AZFc interval of the Y chromosome is the most common known genetic cause of human male infertility. Two partial AZFc deletions (gr/gr and b1/b3) that remove some copies of all AZFc genes have recently been identified in infertile and fertile populations, and an association study indicates that the resulting gene dose reduction represents a risk factor for spermatogenic failure. Methods: To determine the incidence of various partial AZFc deletions and their effect on fertility, we combined quantitative and qualitative analyses of the AZFc interval at the DAZ and CDY1 loci in 300 infertile men and 399 control men. Results: We detected 34 partial AZFc deletions (32 gr/gr deletions), arising from at least 19 independent deletion events, and found gr/gr deletion in 6% of infertile and 3.5% of control men (p>0.05). Our data provide evidence for two large AZFc inversion polymorphisms, and for relative hot and cold spots of unequal crossing over within the blocks of homology that mediate gr/gr deletion. Using SFVs (sequence family variants), we discriminate DAZ1/2, DAZ3/4, CDY1a (proximal), and CDY1b (distal) and define four types of DAZ-CDY1 gr/gr deletion. Conclusions: The only deletion type to show an association with infertility was DAZ3/4-CDY1a (p = 0.042), suggesting that most gr/gr deletions are neutral variants. We see a stronger association, however, between loss of the CDY1a SFV and infertility (p = 0.002). Thus, loss of this SFV through deletion or gene conversion could be a major risk factor for male infertility
    corecore