62 research outputs found
Observed site obstacle impacts on the energy performance of a large scale urban wind turbine using an electrical energy rose
Recommended from our members
Phaeoviruses discovered in kelp (Laminariales)
Phaeoviruses are latent double-stranded DNA viruses that insert their genomes into those of their brown algal (Phaeophyceae) hosts. So far these viruses are known only from members of the Ectocarpales, which are small and short-lived macroalgae. Here we report molecular and morphological evidence for a new Phaeovirus cluster, referred to as sub-group C, infecting kelps (Laminariales) of the genera Laminaria and Saccharina, which are ecologically and commercially important seaweeds. Epifluorescence and TEM observations indicate that the Laminaria digitata Virus (LdigV), the type species of sub-group C, targets the host nucleus for its genome replication, followed by gradual degradation of the chloroplast and assembly of virions in the cytoplasm of both vegetative and reproductive cells. This study is the first to describe phaeoviruses in kelp. In the field, these viruses infected two thirds of their host populations; however, their biological impact remains unknown
Variation in growth, yield and protein concentration in Saccharina latissima (Laminariales, Phaeophyceae) cultivated with different wave and current exposures in the Faroe Islands
Dietary arsenic intake and subsequent risk of cancer: the Japan Public Health Center-based (JPHC) Prospective Study
Biorefinery of the green seaweed Ulva lactuca to produce animal feed, chemicals and biofuels
Correlation of the adhesive properties of cells to N-iso-propylacrylamide/N-tert-butylacrylamide copolymer surfaces with changes in the surface structure using contact angle measurements, molecular simulations and Raman spectroscopy
A series of copolymers of N-isopropylacrylamide (NIPAM) and the more hydrophobic comonomer N-tert-butylacrylamide (NTBAM), with increasing NTBAM content (i.e. increasing hydrophobicity) were prepared. The adhesion of human endothelial cells on polymer films prepared from copolymers of NIPAM:NTBAM was observed to increase with increasing polymer hydrophobicity. However, in the absence of serum, cell adhesion to the different surfaces was statistically indistinguishable. Thus, it appears that the copolymer films differentially support cell adhesion due to selective adsorption of proteins from the physiological environment (the serum). Using contact angle measurements, molecular simulations and Raman spectroscopy to characterize the different surfaces, we show evidence that the different behavior of the films of increasing hydrophobicity is actually due to the different chemical properties of the surfaces with increasing content of NTBAM in the copolymers. As the NTBAM content is increased, the number of NH residues at the surface decreases, due to the additional steric hindrance of the bulkier NTBAM group, which results in decreased hydrogen bonding and thus decreased adsorption of proteins such as albumin. However, in some cases, the adsorption is driven by hydrophobic interactions, and proteins such as fibronectin were found to adsorb more to the films with a higher content of NTBAM. There appears, thus, to be a direct correlation between surface composition and protein binding and the subsequent cell adhesion.</p
Correlation of the adhesive properties of cells to N-isopropylacrylamide/N-tert-butylacrylamide copolymer surfaces with changes in surface structure using contact angle measurements, molecular simulations, and Raman spectroscopy
A series of copolymers of N-isopropylacrylamide (NIPAM) and the more hydrophobic comonomer N-tert-butylacrylamide (NTBAM), with increasing NTBAM content (i.e., increasing hydrophobicity) were prepared. The adhesion of human epithelial cells on polymer films prepared from copolymers of NIPAM: NTBAM was observed to increase with increasing polymer hydrophobicity. However, in the absence of serum, cell adhesion to the different surfaces was statistically indistinguishable. Thus, it appears that the copolymer films differentially support cell adhesion due to selective adsorption of proteins from the physiological environment (the serum). Using contact angle measurements, molecular simulations, and Raman spectroscopy to characterize the different surfaces, we show evidence that the different behavior of cells on the films of increasing hydrophobicity is actually due to the different chemical properties of the surfaces with increasing content of NTBAM in the copolymers. As the NTBAM content is increased, the number of NH residues at the surface decreases, due to the additional steric hindrance of the bulkier NTBAM group, which results in decreased hydrogen bonding and thus decreased adsorption of proteins such as albumin. However, in some cases, the adsorption is driven by hydrophobic interactions, and proteins such as fibronectin were found to adsorb more to the films with a higher content of NTBAM. There appears, thus, to be a direct correlation between surface composition, i.e., the functional groups exposed at the surface, and protein binding and subsequent cell adhesion
pH responsive cross-linked polymeric matrices based on natural polymers: effect of process variables on swelling characterization and drug delivery properties
- …
