10,299 research outputs found
Mn induced modifications of Ga 3d photoemission from (Ga, Mn)As: evidence for long range effects
Using synchrotron based photoemission, we have investigated the Mn-induced
changes in Ga 3d core level spectra from as-grown . Although Mn is located in Ga substitutional sites, and does
therefore not have any Ga nearest neighbours, the impact of Mn on the Ga core
level spectra is pronounced even at Mn concentrations in the range of 0.5%. The
analysis shows that each Mn atom affects a volume corresponding to a sphere
with around 1.4 nm diameter.Comment: Submitted to Physical Review B, Brief Repor
Electron correlations in MnGaAs as seen by resonant electron spectroscopy and dynamical mean field theory
After two decades from the discovery of ferromagnetism in Mn-doped GaAs, its
origin is still debated, and many doubts are related to the electronic
structure. Here we report an experimental and theoretical study of the valence
electron spectrum of Mn-doped GaAs. The experimental data are obtained through
the differences between off- and on-resonance photo-emission data. The
theoretical spectrum is calculated by means of a combination of
density-functional theory in the local density approximation and dynamical
mean-field theory (LDA+DMFT), using exact diagonalisation as impurity solver.
Theory is found to accurately reproduce measured data, and illustrates the
importance of correlation effects. Our results demonstrate that the Mn states
extend over a broad range of energy, including the top of the valence band, and
that no impurity band splits off from the valence band edge, while the induced
holes seem located primarily around the Mn impurity.Comment: 5 pages, 4 figure
Polarized Neutron Laue Diffraction on a Crystal Containing Dynamically Polarized Proton Spins
We report on a polarized-neutron Laue diffraction experiment on a single
crystal of neodynium doped lanthanum magnesium nitrate hydrate containing
polarized proton spins. By using dynamic nuclear polarization to polarize the
proton spins, we demonstrate that the intensities of the Bragg peaks can be
enhanced or diminished significantly, whilst the incoherent background, due to
proton spin disorder, is reduced. It follows that the method offers unique
possibilities to tune continuously the contrast of the Bragg reflections and
thereby represents a new tool for increasing substantially the signal-to-noise
ratio in neutron diffraction patterns of hydrogenous matter.Comment: 5 pages, 3 figure
Experimental investigation of a coherent quantum measurement of the degree of polarization of a single mode light beam
A novel method for the direct measurement of the degree of polarization is
described. It is one of the first practical implementations of a coherent
quantum measurement, the projection on the singlet state. Our first results
demonstrate the successful operation of the method. However, due to the
nonlinear crystals used presently, its application is limited to spectral
widths larger than ~8nm.Comment: 23 pages, 9 figures, submitted to Journal of Modern Optic
Transient Slow Gamma Synchrony Underlies Hippocampal Memory Replay
SummaryThe replay of previously stored memories during hippocampal sharp wave ripples (SWRs) is thought to support both memory retrieval and consolidation in distributed hippocampal-neocortical circuits. Replay events consist of precisely timed sequences of spikes from CA3 and CA1 neurons that are coordinated both within and across hemispheres. The mechanism of this coordination is not understood. Here, we show that during SWRs in both awake and quiescent states there are transient increases in slow gamma (20-50 Hz) power and synchrony across dorsal CA3 and CA1 networks of both hemispheres. These gamma oscillations entrain CA3 and CA1 spiking. Moreover, during awake SWRs, higher levels of slow gamma synchrony are predictive of higher quality replay of past experiences. Our results indicate that CA3-CA1 gamma synchronization is a central component of awake memory replay and suggest that transient gamma synchronization serves as a clocking mechanism to enable coordinated memory reactivation across the hippocampal network
- …