867 research outputs found

    Second Josephson excitations beyond mean field as a toy model for thermal pressure: exact quantum dynamics and the quantum phase model

    Full text link
    A simple four-mode Bose-Hubbard model with intrinsic time scale separation can be considered as a paradigm for mesoscopic quantum systems in thermal contact. In our previous work we showed that in addition to coherent particle exchange, a novel slow collective excitation can be identified by a series of Holstein-Primakoff transformations. This resonant energy exchange mode is not predicted by linear Bogoliubov theory, and its frequency is sensitive to interactions among Bogoliubov quasi-particles; it may be referred to as a second Josephson oscillation, in analogy to the second sound mode of liquid Helium II. In this paper we will explore this system beyond the Gross-Pitaevskii mean field regime. We directly compare the classical mean field dynamics to the exact full quantum many-particle dynamics and show good agreement over a large range of the system parameters. The second Josephson frequency becomes imaginary for stronger interactions, however, indicating dynamical instability of the symmetric state. By means of a generalized quantum phase model for the full four-mode system, we then show that, in this regime, high-energy Bogoliubov quasiparticles tend to accumulate in one pair of sites, while the actual particles preferentially occupy the opposite pair. We interpret this as a simple model for thermal pressure

    Inhibition of spontaneous emission in Fermi gases

    Full text link
    Fermi inhibition is a quantum statistical analogue for the inhibition of spontaneous emission by an excited atom in a cavity. This is achieved when the relevant motional states are already occupied by a cloud of cold atoms in the internal ground state. We exhibit non-trivial effects at finite temperature and in anisotropic traps, and briefly consider a possible experimental realization.Comment: 4 pages with 3 figure

    Utilization of a fixed base simulator to study the stall and spin characteristics of fighter airplanes

    Get PDF
    Feasibility of using fixed simulator to determine stall and spin characteristics of fighter aircraf

    Deconstructing Decoherence

    Get PDF
    The study of environmentally induced superselection and of the process of decoherence was originally motivated by the search for the emergence of classical behavior out of the quantum substrate, in the macroscopic limit. This limit, and other simplifying assumptions, have allowed the derivation of several simple results characterizing the onset of environmentally induced superselection; but these results are increasingly often regarded as a complete phenomenological characterization of decoherence in any regime. This is not necessarily the case: The examples presented in this paper counteract this impression by violating several of the simple ``rules of thumb''. This is relevant because decoherence is now beginning to be tested experimentally, and one may anticipate that, in at least some of the proposed applications (e.g., quantum computers), only the basic principle of ``monitoring by the environment'' will survive. The phenomenology of decoherence may turn out to be significantly different.Comment: 13 two-column pages, 3 embedded figure

    Dynamics of a two-mode Bose-Einstein condensate beyond mean-field theory

    Full text link
    We study the dynamics of a two-mode Bose-Einstein condensate in the vicinity of a mean-field dynamical instability. Convergence to mean-field theory (MFT), with increasing total number of particles NN, is shown to be logarithmically slow. Using a density matrix formalism rather than the conventional wavefunction methods, we derive an improved set of equations of motion for the mean-field plus the fluctuations, which goes beyond MFT and provides accurate predictions for the leading quantum corrections and the quantum break time. We show that the leading quantum corrections appear as decoherence of the reduced single-particle quantum state; we also compare this phenomenon to the effects of thermal noise. Using the rapid dephasing near an instability, we propose a method for the direct measurement of scattering lengths.Comment: 17 pages, 9 figures, Phys. Rev. A 64, 0136XX (2001

    Time-dependent Gross-Pitaevskii equation for composite bosons as the strong-coupling limit of the fermionic BCS-RPA approximation

    Full text link
    The linear response to a space- and time-dependent external disturbance of a system of dilute condensed composite bosons at zero temperature, as obtained from the linearized version of the time-dependent Gross-Pitaevskii equation, is shown to result also from the strong-coupling limit of the time-dependent BCS (or broken-symmetry RPA) approximation for the constituent fermions subject to the same external disturbance. In this way, it is possible to connect excited-state properties of the bosonic and fermionic systems by placing the Gross-Pitaevskii equation in perspective with the corresponding fermionic approximationsComment: 4 pages, 1 figur

    Condensates beyond mean field theory: quantum backreaction as decoherence

    Get PDF
    We propose an experiment to measure the slow log(N) convergence to mean-field theory (MFT) around a dynamical instability. Using a density matrix formalism, we derive equations of motion which go beyond MFT and provide accurate predictions for the quantum break-time. The leading quantum corrections appear as decoherence of the reduced single-particle quantum state.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Let

    Winding up by a quench: vortices in the wake of rapid Bose-Einstein condensation

    Full text link
    A second order phase transition induced by a rapid quench can lock out topological defects with densities far exceeding their equilibrium expectation values. We use quantum kinetic theory to show that this mechanism, originally postulated in the cosmological context, and analysed so far only on the mean field classical level, should allow spontaneous generation of vortex lines in trapped Bose-Einstein condensates of simple topology, or of winding number in toroidal condensates.Comment: 4 pages, 2 figures; misprint correcte

    Exact Diagonalization of Two Quantum Models for the Damped Harmonic Oscillator

    Full text link
    The damped harmonic oscillator is a workhorse for the study of dissipation in quantum mechanics. However, despite its simplicity, this system has given rise to some approximations whose validity and relation to more refined descriptions deserve a thorough investigation. In this work, we apply a method that allows us to diagonalize exactly the dissipative Hamiltonians that are frequently adopted in the literature. Using this method we derive the conditions of validity of the rotating-wave approximation (RWA) and show how this approximate description relates to more general ones. We also show that the existence of dissipative coherent states is intimately related to the RWA. Finally, through the evaluation of the dynamics of the damped oscillator, we notice an important property of the dissipative model that has not been properly accounted for in previous works; namely, the necessity of new constraints to the application of the factorizable initial conditions.Comment: 19 pages, 2 figures, ReVTe
    • …
    corecore