75 research outputs found

    Structure and function of an RNase H domain at the heart of the spliceosome.

    No full text
    Precursor-messenger RNA (pre-mRNA) splicing encompasses two sequential transesterification reactions in distinct active sites of the spliceosome that are transiently established by the interplay of small nuclear (sn) RNAs and spliceosomal proteins. Protein Prp8 is an active site component but the molecular mechanisms, by which it might facilitate splicing catalysis, are unknown. We have determined crystal structures of corresponding portions of yeast and human Prp8 that interact with functional regions of the pre-mRNA, revealing a phylogenetically conserved RNase H fold, augmented by Prp8-specific elements. Comparisons to RNase H–substrate complexes suggested how an RNA encompassing a 5′-splice site (SS) could bind relative to Prp8 residues, which on mutation, suppress splice defects in pre-mRNAs and snRNAs. A truncated RNase H-like active centre lies next to a known contact region of the 5′SS and directed mutagenesis confirmed that this centre is a functional hotspot. These data suggest that Prp8 employs an RNase H domain to help assemble and stabilize the spliceosomal catalytic core, coordinate the activities of other splicing factors and possibly participate in chemical catalysis of splicing

    A common core RNP structure shared between the small nuclear box C/D RNPs and the spliceosomal U 4 snRNP.

    Get PDF
    AbstractThe box C/D snoRNAs function in directing 2′-O-methylation and/or as chaperones in the processing of ribosomal RNA. We show here that Snu13p (15.5kD in human), a component of the U4/U6.U5 tri-snRNP, is also associated with the box C/D snoRNAs. Indeed, genetic depletion of Snu13p in yeast leads to a major defect in RNA metabolism. The box C/D motif can be folded into a stem-internal loop-stem structure, almost identical to the 15.5kD binding site in the U4 snRNA. Consistent with this, the box C/D motif binds Snu13p/15.5kD in vitro. The similarities in structure and function observed between the U4 snRNP (chaperone for U6) and the box C/D snoRNPs raises the interesting possibility that these particles may have evolved from a common ancestral RNP

    Oligomeric Structure of the MALT1 Tandem Ig-Like Domains

    Get PDF
    Mucosa-associated lymphoid tissue 1 (MALT1) plays an important role in the adaptive immune program. During TCR- or BCR-induced NF-κB activation, MALT1 serves to mediate the activation of the IKK (IκB kinase) complex, which subsequently regulates the activation of NF-κB. Aggregation of MALT1 is important for E3 ligase activation and NF-κB signaling.Unlike the isolated CARD or paracaspase domains, which behave as monomers, the tandem Ig-like domains of MALT1 exists as a mixture of dimer and tetramer in solution. High-resolution structures reveals a protein-protein interface that is stabilized by a buried surface area of 1256 Å(2) and contains numerous hydrogen and salt bonds. In conjunction with a second interface, these interactions may represent the basis of MALT1 oligomerization.The crystal structure of the tandem Ig-like domains reveals the oligomerization potential of MALT1 and a potential intermediate in the activation of the adaptive inflammatory pathway.This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web plugin are available in Text S1

    Modulation of the NF-κB Pathway by Bordetella pertussis Filamentous Hemagglutinin

    Get PDF
    Background Filamentous hemagglutinin (FHA) is a cell-associated and secreted adhesin produced by Bordetella pertussis with pro-apoptotic and pro-inflammatory activity in host cells. Given the importance of the NF-κB transcription factor family in these host cell responses, we examined the effect of FHA on NF-κB activation in macrophages and bronchial epithelial cells, both of which are relevant cell types during natural infection. Methodology/Principal Findings Exposure to FHA of primary human monocytes and transformed U-937 macrophages, but not BEAS-2B epithelial cells, resulted in early activation of the NF-κB pathway, as manifested by the degradation of cytosolic IκBα, by NF-κB DNA binding, and by the subsequent secretion of NF-κB-regulated inflammatory cytokines. However, exposure of macrophages and human monocytes to FHA for two hours or more resulted in the accumulation of cytosolic IκBα, and the failure of TNF-α to activate NF-κB. Proteasome activity was attenuated following exposure of cells to FHA for 2 hours, as was the nuclear translocation of RelA in BEAS-2B cells. Conclusions These results reveal a complex temporal dynamic, and suggest that despite short term effects to the contrary, longer exposures of host cells to this secreted adhesin may block NF-κB activation, and perhaps lead to a compromised immune response to this bacterial pathogen

    Coronin-1A Links Cytoskeleton Dynamics to TCRαβ-Induced Cell Signaling

    Get PDF
    Actin polymerization plays a critical role in activated T lymphocytes both in regulating T cell receptor (TCR)-induced immunological synapse (IS) formation and signaling. Using gene targeting, we demonstrate that the hematopoietic specific, actin- and Arp2/3 complex-binding protein coronin-1A contributes to both processes. Coronin-1A-deficient mice specifically showed alterations in terminal development and the survival of αβT cells, together with defects in cell activation and cytokine production following TCR triggering. The mutant T cells further displayed excessive accumulation yet reduced dynamics of F-actin and the WASP-Arp2/3 machinery at the IS, correlating with extended cell-cell contact. Cell signaling was also affected with the basal activation of the stress kinases sAPK/JNK1/2; and deficits in TCR-induced Ca2+ influx and phosphorylation and degradation of the inhibitor of NF-κB (IκB). Coronin-1A therefore links cytoskeleton plasticity with the functioning of discrete TCR signaling components. This function may be required to adjust TCR responses to selecting ligands accounting in part for the homeostasis defect that impacts αβT cells in coronin-1A deficient mice, with the exclusion of other lympho/hematopoietic lineages

    COVID 19 What You Need to Know

    Get PDF
    This is the first presentation in the new Shelter-in-Place lecture series. This first lecture is two-fold. First, it covers the basics of the COVID-19 virus including: how it spreads, possible origin, and other pertinent information. This portion of the presentation was followed by an overview of the international recruitment efforts in response to the virus, including: student perspectives, recruitment methods, and other important information
    • …
    corecore