126 research outputs found

    Applying acceptance requirements to requirements modeling tools via gamification: a case study on privacy and security.

    Get PDF
    Requirements elicitation, analysis and modeling are critical activities for software success. However, software systems are increasingly complex, harder to develop due to an ever-growing number of requirements from numerous and heterogeneous stakeholders, concerning dozens of requirements types, from functional to qualitative, including adaptation, security and privacy, ethical, acceptance and more. In such settings, requirements engineers need support concerning such increasingly complex activities, and Requirements Engineering (RE) modeling tools have been developed for this. However, such tools, although effective, are complex, time-consuming and requiring steep learning curves. The consequent lack of acceptance and abandonment in using such tools, by engineers, paves the way to the application of RE techniques in a more error-prone, low-quality way, increasing the possibility to have failures in software systems delivered. In this paper, we identify main areas of lack of acceptance, affecting RE engineers, for such tools, and propose an approach for making modeling tools more effective in engaging the engineer in performing RE in a tool-based way, receiving adequate feedback and staying motivated to use modeling tools. This is accomplished by performing acceptance requirements analysis (through the Agon Framework) and using gamification to increase the engagement of engineers during the usage of RE modeling tools. Towards this end, we performed a case study, within the VisiOn European Project, for enhancing a tool for modeling privacy and security requirements. Our case study provides preliminary evidence that our approach supports in making RE modeling tools more engaging from the engineer perspective

    Tests of Modified Gravity with Dwarf Galaxies

    Full text link
    In modified gravity theories that seek to explain cosmic acceleration, dwarf galaxies in low density environments can be subject to enhanced forces. The class of scalar-tensor theories, which includes f(R) gravity, predict such a force enhancement (massive galaxies like the Milky Way can evade it through a screening mechanism that protects the interior of the galaxy from this "fifth" force). We study observable deviations from GR in the disks of late-type dwarf galaxies moving under gravity. The fifth-force acts on the dark matter and HI gas disk, but not on the stellar disk owing to the self-screening of main sequence stars. We find four distinct observable effects in such disk galaxies: 1. A displacement of the stellar disk from the HI disk. 2. Warping of the stellar disk along the direction of the external force. 3. Enhancement of the rotation curve measured from the HI gas compared to that of the stellar disk. 4. Asymmetry in the rotation curve of the stellar disk. We estimate that the spatial effects can be up to 1 kpc and the rotation velocity effects about 10 km/s in infalling dwarf galaxies. Such deviations are measurable: we expect that with a careful analysis of a sample of nearby dwarf galaxies one can improve astrophysical constraints on gravity theories by over three orders of magnitude, and even solar system constraints by one order of magnitude. Thus effective tests of gravity along the lines suggested by Hui et al (2009) and Jain (2011) can be carried out with low-redshift galaxies, though care must be exercised in understanding possible complications from astrophysical effects.Comment: 26 pages, 9 figure

    The Novel Probes Project -- Tests of Gravity on Astrophysical Scales

    Get PDF
    The Novel Probes Project, an initiative to advance the field of astrophysical tests of the dark sector by creating a forum that connects observers and theorists, is introduced. This review focuses on tests of gravity and is intended to be of use primarily to observers, as well as theorists with an interest in the development of experimental tests. It is twinned with a separate upcoming review on dark matter self-interactions. The review focuses on astrophysical tests of gravity in the weak-field regime, ranging from stars to quasilinear cosmological scales. This regime is complementary to both strong-field tests of gravity and background and linear probes in cosmology. In particular, the nonlinear screening mechanisms that are an integral part of viable modified-gravity models lead to characteristic signatures, specifically on astrophysical scales. The potential of these probes is not limited by cosmic variance but comes with the challenge of building robust theoretical models of the nonlinear dynamics of stars, galaxies, and large-scale structure. The groundwork is laid for a thorough exploration of the weak-field, nonlinear regime, with an eye to using the current and next generation of observations for tests of gravity. The scene is set by showing how gravitational theories beyond general relativity are expected to behave, focusing primarily on screening mechanisms. Analytic and numerical techniques for exploring the relevant astrophysical regime are described, as are the pertinent observational signals. With these in hand a range of astrophysical tests of gravity are presented, and prospects for future measurements and theoretical developments are discussed

    Parameterizing scalar-tensor theories for cosmological probes

    Full text link
    We study the evolution of density perturbations for a class of f(R)f(R) models which closely mimic Λ\LambdaCDM background cosmology. Using the quasi-static approximation, and the fact that these models are equivalent to scalar-tensor gravity, we write the modified Friedmann and cosmological perturbation equations in terms of the mass MM of the scalar field. Using the perturbation equations, we then derive an analytic expression for the growth parameter γ\gamma in terms of MM, and use our result to reconstruct the linear matter power spectrum. We find that the power spectrum at z∼0z \sim 0 is characterized by a tilt relative to its General Relativistic form, with increased power on small scales. We discuss how one has to modify the standard, constant γ\gamma prescription in order to study structure formation for this class of models. Since γ\gamma is now scale and time dependent, both the amplitude and transfer function associated with the linear matter power spectrum will be modified. We suggest a simple parameterization for the mass of the scalar field, which allows us to calculate the matter power spectrum for a broad class of f(R)f(R) models

    The speed of Galileon gravity

    Get PDF
    We analyse the speed of gravitational waves in coupled Galileon models with an equation of state ωphgr=−1 now and a ghost-free Minkowski limit. We find that the gravitational waves propagate much faster than the speed of light unless these models are small perturbations of cubic Galileons and the Galileon energy density is sub-dominant to a dominant cosmological constant. In this case, the binary pulsar bounds on the speed of gravitational waves can be satisfied and the equation of state can be close to -1 when the coupling to matter and the coefficient of the cubic term of the Galileon Lagrangian are related. This severely restricts the allowed cosmological behaviour of Galileon models and we are forced to conclude that Galileons with a stable Minkowski limit cannot account for the observed acceleration of the expansion of the universe on their own. Moreover any sub-dominant Galileon component of our universe must be dominated by the cubic term. For such models with gravitons propagating faster than the speed of light, the gravitons become potentially unstable and could decay into photon pairs. They could also emit photons by Cerenkov radiation. We show that the decay rate of such speedy gravitons into photons and the Cerenkov radiation are in fact negligible. Moreover the time delay between the gravitational signal and light emitted by explosive astrophysical events could serve as a confirmation that a modification of gravity acts on the largest scales of the Universe

    Tests of chameleon gravity

    Get PDF
    Theories of modified gravity, where light scalars with non-trivial self-interactions and non-minimal couplings to matter—chameleon and symmetron theories—dynamically suppress deviations from general relativity in the solar system. On other scales, the environmental nature of the screening means that such scalars may be relevant. The highly-nonlinear nature of screening mechanisms means that they evade classical fifth-force searches, and there has been an intense effort towards designing new and novel tests to probe them, both in the laboratory and using astrophysical objects, and by reinterpreting existing datasets. The results of these searches are often presented using different parametrizations, which can make it difficult to compare constraints coming from different probes. The purpose of this review is to summarize the present state-of-the-art searches for screened scalars coupled to matter, and to translate the current bounds into a single parametrization to survey the state of the models. Presently, commonly studied chameleon models are well-constrained but less commonly studied models have large regions of parameter space that are still viable. Symmetron models are constrained well by astrophysical and laboratory tests, but there is a desert separating the two scales where the model is unconstrained. The coupling of chameleons to photons is tightly constrained but the symmetron coupling has yet to be explored. We also summarize the current bounds on f(R) models that exhibit the chameleon mechanism (Hu and Sawicki models). The simplest of these are well constrained by astrophysical probes, but there are currently few reported bounds for theories with higher powers of R. The review ends by discussing the future prospects for constraining screened modified gravity models further using upcoming and planned experiments

    The shape dependence of chameleon screening

    Get PDF
    Chameleon scalar fields can screen their associated fifth forces from detection by changing their mass with the local density. These models are an archetypal example of a screening mechanism, and have become an important target for both cosmological surveys and terrestrial experiments. In particular there has been much recent interest in searching for chameleon fifth forces in the laboratory. It is known that the chameleon force is less screened around non-spherical sources, but only the field profiles around a few simple shapes are known analytically. In this work we introduce a numerical code that solves for the chameleon field around arbitrary shapes with azimuthal symmetry placed in a spherical vacuum chamber. We find that deviations from spherical symmetry can increase the chameleon acceleration experienced by a test particle, and that the least screened objects are those which minimize some internal dimension. For the shapes considered in this work, keeping the mass, density and background environment fixed, the accelerations due to the source varied by a factor of ~ 3

    Confirmation of general relativity on large scales from weak lensing and galaxy velocities

    Full text link
    Although general relativity underlies modern cosmology, its applicability on cosmological length scales has yet to be stringently tested. Such a test has recently been proposed, using a quantity, EG, that combines measures of large-scale gravitational lensing, galaxy clustering and structure growth rate. The combination is insensitive to 'galaxy bias' (the difference between the clustering of visible galaxies and invisible dark matter) and is thus robust to the uncertainty in this parameter. Modified theories of gravity generally predict values of EG different from the general relativistic prediction because, in these theories, the 'gravitational slip' (the difference between the two potentials that describe perturbations in the gravitational metric) is non-zero, which leads to changes in the growth of structure and the strength of the gravitational lensing effect3. Here we report that EG = 0.39 +/- 0.06 on length scales of tens of megaparsecs, in agreement with the general relativistic prediction of EG ≈\approx 0.4. The measured value excludes a model within the tensor-vector-scalar gravity theory, which modifies both Newtonian and Einstein gravity. However, the relatively large uncertainty still permits models within f(R) theory, which is an extension of general relativity. A fivefold decrease in uncertainty is needed to rule out these models.Comment: Submitted version; 13 pages, 2 figures. Accepted version and supplementary material are available at: http://www.nature.com/nature/journal/v464/n7286/full/nature08857.html

    Modified Gravity: the CMB, Weak Lensing and General Parameterisations

    Full text link
    We examine general physical parameterisations for viable gravitational models in the f(R)f(R) framework. This is related to the mass of an additional scalar field, called the scalaron, that is introduced by the theories. Using a simple parameterisation for the scalaron mass M(a)M(a) we show there is an exact correspondence between the model and popular parameterisations of the modified Poisson equation μ(a,k)\mu(a,k) and the ratio of the Newtonian potentials η(a,k)\eta(a,k). However, by comparing the aforementioned model against other viable scalaron theories we highlight that the common form of μ(a,k)\mu(a,k) and η(a,k)\eta(a,k) in the literature does not accurately represent f(R)f(R) behaviour. We subsequently construct an improved description for the scalaron mass (and therefore μ(a,k)\mu(a,k) and η(a,k)\eta(a,k)) which captures their essential features and has benefits derived from a more physical origin. We study the scalaron's observational signatures and show the modification to the background Friedmann equation and CMB power spectrum to be small. We also investigate its effects in the linear and non linear matter power spectrum--where the signatures are evident--thus giving particular importance to weak lensing as a probe of these models. Using this new form, we demonstrate how the next generation Euclid survey will constrain these theories and its complementarity to current solar system tests. In the most optimistic case Euclid, together with a Planck prior, can constrain a fiducial scalaron mass M0=9.4×10−30eVM_{0} = 9.4 \times 10^{-30}{\rm eV} at the ∼20\sim 20 % level. However, the decay rate of the scalaron mass, with fiducial value ν=1.5\nu = 1.5, can be constrained to ∼3\sim 3% uncertainty
    • …
    corecore