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Abstract: We analyse the speed of gravitational waves in coupled Galileon models with

an equation of state ωφ = −1 now and a ghost-free Minkowski limit. We find that the

gravitational waves propagate much faster than the speed of light unless these models are

small perturbations of cubic Galileons and the Galileon energy density is sub-dominant to

a dominant cosmological constant. In this case, the binary pulsar bounds on the speed

of gravitational waves can be satisfied and the equation of state can be close to -1 when

the coupling to matter and the coefficient of the cubic term of the Galileon Lagrangian

are related. This severely restricts the allowed cosmological behaviour of Galileon models

and we are forced to conclude that Galileons with a stable Minkowski limit cannot account

for the observed acceleration of the expansion of the universe on their own. Moreover any

sub-dominant Galileon component of our universe must be dominated by the cubic term.

For such models with gravitons propagating faster than the speed of light, the gravitons

become potentially unstable and could decay into photon pairs. They could also emit

photons by Cerenkov radiation. We show that the decay rate of such speedy gravitons into

photons and the Cerenkov radiation are in fact negligible. Moreover the time delay between

the gravitational signal and light emitted by explosive astrophysical events could serve as

a confirmation that a modification of gravity acts on the largest scales of the Universe.
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1. Introduction

Gravitational waves have now been predicted for nearly a century and despite decades of

experimental efforts, their existence is only confirmed by indirect evidence coming from

the time drift of the period of binary pulsars. New experiments such as the advanced

Laser Interferometry Gravitational-Wave Observatory (a-LIGO) [1], the advanced VIRGO

interferometer [2], the Kamioka Wave Detector (KAGRA) [3], the space based mission

DECIGO [4] or eLISA [5] will be able to test directly the existence of gravitational waves

to improved levels. Gravity waves are also important probes for theories going beyond

Einstein’s General Relativity (GR) [6]. These theories are motivated by the discovery of

the recent acceleration of the expansion of the Universe [7] whose origin is still unknown.

Models such as the quartic Galileons [8] where a coupling between a scalar field and gravity

is present predict a background dependent speed of gravitational waves.

In this work we focus on Galileon models [8]. These are a subset of the Horndeski

action [9, 10] describing the most general scalar tensor model with second order equations

of motion. The Galileon terms on flat space are protected by a symmetry, the so called

Galileon symmetry, which is softly broken on a curved spacetime background [11]. In these

models the cosmic acceleration is due to the presence of higher order terms in the derivatives
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compared to quintessence models where a non-linear potential, typically containing a term

equivalent to a cosmological constant, provides the required amount of vacuum energy.

In vacuum the scalar mediates a fifth force of at least gravitational strength. Locally

close to massive sources the scalar field is strongly influenced by matter and within the

Vainshtein radius GR is restored. On cosmological time scales, the scalar field evolves.

This cosmological time drift is screened from matter fields whilst the average density of the

universe is sufficiently high but has consequences for the dynamics of gravity locally [12].

In particular the speed of gravitational waves in a massive environment is not protected

from the evolution of the background cosmology by the Vainshtein mechanism [8], meaning

that it can differ from the speed of light in a significant manner [13]. We will review this

calculation in Section 3.

If we impose that the equation of state of the scalar field should be close to -1 now

and the existence of a stable Minkowski limit of the theory in the absence of matter, both

necessary conditions for a viable cosmology dominated by Galileons at late times and a

meaningful embedding of the model in higher dimensions1 [14], we find that the speed

of gravitational waves would be much greater than one. This would increase the rate of

emission of gravitational waves from binary pulsars. As a result, the speed of gravity in such

a Galileon model is not compatible with the bound that positive deviations of the speed of

gravity from the speed of light cannot be more than one percent [13,15]. We then conclude

that these Galileon models cannot lead to the acceleration of the Universe on their own

and a certain amount of dark energy must be coming from a pure cosmological constant.

This forces the quartic Galileon terms to be subdominant to the cubic terms in order that

the binary pulsar bound can be satisfied. When this is the case, the time delay between

gravity and light or even neutrinos can be as large as a few thousand years for events

like the SN1987A supernova explosion. This would essentially decouple any observation of

supernovae gravitational waves from the corresponding photon or neutrino signal coming

from such explosive astrophysical events. On the other hand, a time difference as low as

the uncertainty on the difference in emission time signal between neutrinos and gravity,

e.g. up to 10−3 s for supernovae [16], would allow one to bound deviations of the quartic

Galileon model from its cubic counterpart at the 10−14 level.

One possible caveat to these results would be if the superluminal gravitational waves

do not reach our detectors because they either decay into two photons or lose all their

energy through Cerenkov radiation [17]. We will show that superluminal gravitational

waves with a speed as large as one percent higher than the speed of light are not excluded

by particle physics processes. A related possibility is at the origin of the stringent bounds

on subluminal gravitational waves which could be Cerenkov radiated by high energy cosmic

rays. As these high energy rays are observed the speed of gravitons cannot be significantly

smaller than that of the particle sourcing the cosmic ray [18, 19]. We analyse the decay

and the Cerenkov effect for superluminal gravitational waves and we find that their effects

are negligible.

1We require this embedding in higher dimensional brane models with positive tension branes as a pre-

requisite first step towards a possible extension to fundamental theories such as string theory.
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Galileons have been widely studied both on purely theoretical grounds, with results

showing that this kind of models arise also in the context of massive gravity [20] and

braneworld models [21]. Constraints on the allowed cosmology of Galileon theories can

be obtained from a wide variety of observations, unveiling a very rich phenomenology

[12,22–36]. Here we consider for the first time the constraints that current and near future

observations of gravitational waves can place on these theories.

In section 2, we recall details about Galileon models and show that quartic models

with an equation of state close to -1 lead to very fast gravitons. In section 3, we consider

the influence of the Vainshtein mechanism on the propagation of gravity and we check

that the screening mechanism does not protect the speed of gravity from large deviations

compared to the speed of light. We also introduce models of subdominant Galileons whose

gravitational waves have a speed which satisfies the binary pulsar bounds. In section 4

we consider the decay rate of gravitons into two photons, and the Cerenkov radiation.

We show that these processes are negligible for allowed differences between the speed of

gravitons and photons. Finally In Section 5 we discuss the time delay in the arrival time

of gravitons and photons from explosive astrophysical sources. We conclude in section 6.

2. Galileons

2.1 The Models

In this paper, we are interested in models of modified gravity with a Galilean symmetry.

They are potential candidates to explain the late time acceleration of the expansion of

the Universe. They also lead to a modification of gravity on large scales. Such Galileons

are scalar field theories which have equations of motion that are at most second order in

the derivatives. Moreover they are interesting dark energy candidates where an explicit

cosmological constant is not compulsory. Their Lagrangian reads in the Jordan frame

defined by the metric gµν

L =

(
1 + 2

c0φ

mPl

)
R

16πGN
− c2

2
(∂φ)2 − c3

Λ3
�φ(∂φ)2 − c4

Λ6
L4 −

c5

Λ9
L5 . (2.1)

The common scale

Λ3 = H2
0mPl (2.2)

is chosen to be of cosmological interest as we focus on cosmological Galileon models which

can lead to dark energy in the late time Universe. We also require that c2 > 0 to avoid

the presence of ghosts in a Minkowski background. This theory could be rewritten in the

Einstein frame where the conformal coupling of the scalar field to matter would be given

by

A(φ) = 1 +
c0φ

mPl
(2.3)
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where c0 is a constant. The complete Galileon Lagrangian depends on operators with

higher order terms in the derivatives which are given by

L4 =(∂φ)2

[
2(�φ)2 − 2DµDνφD

νDµφ−R (∂φ)2

2

]
L5 =(∂φ)2

[
(�φ)3 − 3(�φ)DµDνφD

νDµφ+ 2DµD
νφDνD

ρφDρD
µφ (2.4)

−6DµφD
µDνφDρφGνρ] .

These terms play an important role cosmologically. In the following and in the study of

the cosmological evolution, we focus on the coupling of the Galileon to Cold Dark Matter

(CDM) as the coupling to baryons is more severely constrained by the time variation

of Newton’s constant in the solar system, at the one percent level, and does not play a

significant role for the background cosmology [38].

This model is a subset of terms in the Horndeski action describing the most general

scalar tensor theory with second order equations of motion

L = K(φ,X)−G3(X,φ)�φ+G4(X,φ)R+G4,X

[
(�φ)2 − (DµDνφ)2

]
+

G5(X,φ)GµνD
µDνφ− 1

6
G5,X

[
(�φ)3 − 3�φ(DµDνφ)2 + 2(DµDαφ)(DαDβφ)(DβDµφ)

]
with the particular functions

K = c2X, G3(X) = −2
c3

Λ3
X, G4(X,φ) =

A2(φ)

16πGN
+ 2

c4

Λ6
X2, G5(X) = −6

c5

Λ9
X2 (2.5)

where X = − (∂φ)2

2 is the kinetic energy of the field. In the following we shall focus on

quartic Galileons with c5 = 0 as this leads to both interesting cosmology and a non-trivial

speed for gravitational waves.

2.2 Cosmological Galileons

We focus on the behaviour of Galileon models on cosmological scales in a Friedmann-

Robertson-Walker background

ds2 = a2(−dη2 + dx2) (2.6)

where η is conformal time and we have set the speed of light c = 1. The equations of

motion of the Galileons can be simplified using the variable x = φ′/mPl where a prime

denotes ′ = d/d ln a = −d/d ln(1 + z), a is the scale factor and z the redshift. We define

the scaled field ȳ = φ
mPlx0

, the rescaled variables x̄ = x/x0 and H̄ = H/H0 where H is the

Hubble rate, and the rescaled couplings [36] c̄i = cix
i
0, i = 2 . . . 5, c̄0 = c0x0, c̄G = cGx

2
0

where x0 is the value of x now. Notice that x0 is not determined by the dynamics and is

a free parameter of the model. The cosmological evolution of the Galileon satisfies [37]

x̄′ = −x̄+
αλ− σγ
σβ − αω

ȳ′ = x̄

H̄ ′ = −λ
σ

+
ω

σ

(
σγ − αλ
σβ − αω

)
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where we have introduced the functions

α =− 3c̄3H̄
3x̄2 + 15c̄4H̄

5x̄3 + c̄0H̄ +
c̄2H̄x̄

6
(2.7)

β =− 2c̄3H̄
4x̄+

c̄2H̄
2

6
+ 9c̄4H̄

6x̄2 (2.8)

γ =2c̄0H̄
2 − c̄3H̄

4x̄2 +
c̄2H̄

2x̄

3
(2.9)

σ =2(1− 2c̄0ȳ)H̄ − 2c̄0H̄x̄+ 2c̄3H̄
3x̄3 − 15c̄4H̄

5x̄4 (2.10)

λ =3(1− 2c̄0ȳ)H̄2 − 2c̄0H̄x̄− 2c̄3H̄
4x̄3 +

c̄2H̄
2x̄2

2
+

Ωr0

a4
+

15

2
c̄4H̄

6x̄4

ω =− 2c̄0H̄
2 + 2c̄3H̄

4x̄2 − 12c̄4H̄
6x̄3. (2.11)

The Friedmann equation which governs the evolution of the Hubble rate can be written in

a similar way

(1− 2c̄0ȳ)H̄2 =
Ωm0

a3
+

Ωr0

a4
+ 2c̄0H̄

2x̄+
c̄2H̄

2x̄2

6
− 2c̄3H̄

4x̄3 +
15

2
c̄4H̄

6x̄4 (2.12)

where the final four terms on the right hand side of Equation (2.12) correspond to the

scalar energy density

ρφ
H2

0m
2
Pl

= 6c̄0H̄
2x̄+

c̄2H̄
2x̄2

2
− 6c̄3H̄

4x̄3 +
45

2
c̄4H̄

6x̄4 (2.13)

and the scalar pressure is

pφ
H2

0m
2
Pl

=− c̄0[4H̄2x̄+ 2H̄(H̄x̄)′] +
c̄2

2
H̄2x̄2 + 2c3H̄

3x̄2(H̄x̄)′ − c̄4[
9

2
H̄6x̄4 + 12H̄6x̄3x̄′

+ 15H̄5x̄4H̄ ′] (2.14)

from which we define the equation of state of dark energy ωφ =
pφ
ρφ

which must be close to

-1 today if the Galileon is the dominant component of the universe at late times to comply

with observational data. Normalising the field such y0 = 0, which is a choice we can make

without loss of generality, the Friedmann equation gives one constraint on the parameters

of the model

1 = Ωm0 + Ωr0 + 2c̄0 +
c̄2

6
− 2c̄3 +

15

2
c̄4 (2.15)

which is useful to reduce the dimension of the parameter space by one unit.

2.3 The Speed of Gravitons

The speed of gravitational waves in a cosmological background is given by [17]

c2
T =

A2(φ)
16πGN

+ 2 c4
Λ6X

2

A2(φ)
16πGN

− 6 c4
Λ6X2

(2.16)

where we restrict our analysis to the quartic Galileons for simplicity. We will retrieve this

result in the following sections where we study the effect of the Vainshtein mechanism on
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Figure 1: The variation of the speed of gravitational waves as a function of redshift for a quartic

Galileon model with an equation of state ωφ = −1 now. The local constraints from binary pulsars

rule out these types of models.

the speed of gravitational waves. In terms of cosmological quantities the speed of gravitons

is simply

c2
T =

1 + 2c̄0ȳ + c̄4H̄
4x̄4

1 + 2c̄0ȳ − 3c̄4H̄4x̄4
(2.17)

This sets the current speed to be

c2
T0 =

1 + c̄4

1− 3c̄4
(2.18)

When c4 > 0, this is larger than one and no constraint from Cerenkov radiation of gravitons

by cosmic rays applies. For the model with an equation of state ωφ = −1 and c̄2 = 1 we have

c̄4 ∼ 0.3 which implies that cT ∼ 4, as shown in Figure 1. Typically for the models with

positive c2 and an equation of state close to -1, the deviation of the speed of gravitational

waves from one is far bigger than the percent level as allowed by the binary pulsar bound

derived in [13].

3. The Speed of Gravitons and Screening

3.1 Screening Effects

The speed of gravitons is tightly constrained by the drift of the period of binary pulsars.

When the speed of gravitons exceeds the speed of light by more than one percent, the change

in the period of binaries cannot accommodate observations [13]. As we have seen, quartic

Galileons with no ghosts in a Minkowski background, c̄2 = 1 and a cosmological equation of

state now close to -1 have a cosmological speed which is much larger than the speed of light.

One possible way out which could reconcile both a large speed of gravitons on cosmological

scales and a constrained one in the pulsar environment is the presence of screening in the
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form of the Vainshtein mechanism. We know that the Vainshtein mechanism suppresses

the effects of the scalar on matter fields. We now determine whether the same is true of

gravitons. The speed of gravity depends on the Lagrangian

Lg =
√
−g[G4R+G4X((�φ)2 −DµDνφD

νDνφ)] (3.1)

where we have restricted our model to quartic Galileons. We are interested in a near

Minkowski geometry on the time and spatial scales of the binary pulsars which are much

smaller than the age and size of the Universe. First the Einstein Hilbert term is

√
−gG4R ⊃ −

1

4
G4(∂µhνλ∂

µhνλ) (3.2)

where we have expanded gµν = ηµν + hµν and used the transverse and traceless properties

of gravitons hµµ = 0, ∂µh
µ
ν = 0 where indices are raised using the Minkowski metric. The

term involving G4X can be evaluated using

(�φ)2 −DµDνφD
νDνφ ⊃ ηµνηαβ(DµDνφDαDβφ−DµDαφDνDβφ) (3.3)

where DµDνφ = ∂µ∂νφ− Γλµν∂λφ. We are only interested in terms involving derivatives of

hµν hence we have

Γλµν =
ηλρ

2
(∂νhµρ + ∂µhνρ − ∂ρhµν) (3.4)

and we notice that

ηµνΓλµν = 0 (3.5)

due to the traceless and transverse property. This implies that we are left with

(�φ)2 −DµDνφD
νDνφ ⊃ −ηµνηαβΓλµα∂λφΓρβν∂ρφ. (3.6)

We are focusing on waves hij such that kihij = 0 and hii = 0, we can then use

Γ0
ij =

1

2
∂0hij , Γijk =

1

2
(∂jhik + ∂khij − ∂ihjk), Γi0j =

1

2
∂0hij (3.7)

and expand

(�φ)2−DµDνφD
νDνφ ⊃ −ηµνηαβ(Γ0

µα∂0φΓ0
βν∂0φ+Γiµα∂iφΓjβν∂jφ+2Γ0

µα∂0φΓiβν∂iφ (3.8)

which becomes

(�φ)2−DµDνφD
νDνφ ⊃ −Γ0

ij∂0φΓ0
ij∂0φ−Γikl∂iφΓjkl∂jφ+2Γi0k∂iφΓj0k∂jφ−2Γ0

jk∂0φΓijk∂iφ.

(3.9)

In order to simplify the analysis, we consider the propagation of the gravitational waves

along the spatial gradient of φ, i.e. ∂iφh
i
j = 0. This is in particular the case for spherical

waves with k0 = ω and kr = k 6= 0 when φ depends only on r and t. In this situation we

assume that the time variation is coming from the background cosmological evolution and
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the radial dependence is sourced by an over-density of matter. We choose that hij is only

non-zero for hθθ and hθφ. In this case we find that

(�φ)2−DµDνφD
νDνφ ⊃ −1

4
(∂0φ)2(∂0hij)

2− 1

4
(∂iφ∂ihjk)

2 +
1

2
∂0φ∂iφ∂

ihjk∂0h
jk. (3.10)

The kinetic terms resulting from Lg read

Lg ∼
(ḣij)

2

4
(G4−G4X φ̇

2)−
(∂ihjk)

2

4
G4−

(∂iφ∂ihjk)
2

4
G4X−

G4X

2
∂0φ∂iφ∂

ihjk∂0h
jk. (3.11)

We now specialise to the case where the background scalar field is spherical and the gravi-

tational wave is radial. We deduce the propagation equation, which we simplify by noting

that that the derivatives of hij are much larger than the derivatives of the background

field, (which also implies that we can neglect mass terms for the graviton as they involve

only derivatives of the background)

ḧij(G4 −G4X φ̇
2) + 2G4X φ̇∂rφ∂rḣij −∆hij(G4 + (∂rφ)2G4X) = 0. (3.12)

This can be easily analysed for spherical waves hij ∼ eiωt−kr

r with variations on time and

spatial scales much larger that the background ones, leading to the dispersion relation

ω2(G4 −G4X φ̇
2)− 2ωkφ̇∂rφ− k2(G4 + (∂rφ)2G4X) = 0 (3.13)

In the absence of any spatial dependence ∂rφ ≡ 0, we retrieve that

c2
T =

G4

G4 − 2XG4X
=

m2
Pl
2 + 2c4X2

Λ6

m2
Pl
2 −

6c4X2

Λ6

> 1 (3.14)

if c4 > 0, which is the result quoted in Equation (2.16). On the other hand when the

spatial gradient dominates φ̇2 � (∂rφ)2, we find that

c2
T = 1− 2XG4X

G4
=

m2
Pl
2 −

2c4X2

Λ6

m2
Pl
2 + 2c4X2

Λ6

< 1 (3.15)

when c4 > 0. If the terms in G4X are negligible, the speed of gravitons is very close to

one. In the quartic Galileon case, close to a spherical mass M , we have that X is constant

inside the Vainshtein radius and

X = −1

2
Λ4

(
c0bM

8πmPlc4

)2/3

(3.16)

where c0b . 10−2 is the coupling of the Galileon to baryons [38]. For objects of masses of

order of one solar mass with c4 of order one, we find that cT is equal to one up to terms of

order X2/m2
PlΛ

6 which are very small of order 10−30. As a result the bounds on the speed

of gravitons from cosmic rays are easily satisfied. Unfortunately, the condition φ̇2 � (∂rφ)2

is only valid when

x2
0 ≡

φ̇2
0

m2
PlH

2
0

� (RVH0)2. (3.17)
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As the Vainshtein radius RV must be less than the size of the horizon in order that there

exist some effects of the Galileon on cosmological scales, this requires a fine tuning of the

initial conditions to have a slowly evolving Galileon now. When this is not satisfied, the

speed of gravitons is not screened locally and it can deviate from one substantially, e.g.

when x0 ∼ 1. In fact the Vainshtein radius is given by

RV =

(
c2

4c0bM

(8π)2c3
3mPlΛ3

)1/3

(3.18)

which is RV ∼ 10−7H0 for objects of one solar mass and c3 ∼ c4 ∼ 1. This means that the

effects of Vainshtein screening due to the presence of massive sources cannot be used to

reduce the speed of gravitons to an acceptable level. This was first realised in [13]. In the

following we will avoid this fine tuning on the present time derivative of φ, and make the

speed of gravitational waves close to one by requiring c4 to be small, i.e. when the Galileon

model is essentially cubic.

3.2 Cubic Galileons

If we assume that x0 is not very small, screening does not modify the speed of gravitons

and the speed of gravitational waves emitted by compact objects like binary pulsars can

only be small when the influence of the quartic Galileon terms is negligible. For the purely

cubic Galileons, the condition that the equation of state should be close to -1 implies that

c2 < 0 [35], a case that we discard as we require a well-defined Minkowski limit. We will

see that one can preserve a positive c2 and still impose that c4 is small together with an

equation of state close to -1 when the Galileon scalar field does not lead to all the dark

energy of the Universe. Indeed if a dominant cosmological constant is added to the model,

the dynamics can be integrated at late times and we have

φ̇0 ∼ H0mPl

√
Ωmc0

c3
. (3.19)

This approximation is valid as long as the cubic term dominates over the quartic and

quadratic ones, i.e. c3
Hφ̇
Λ3 � c2 and c4

Hφ̇
Λ3 � c3, this can be achieved when

c̄2 �
√

Ωmc̄0c̄3, c̄4 �

√
c̄3

3

Ωmc̄0
. (3.20)

We then deduce that X ∼ H2m2
Pl

2
Ωmc0
c3

and finally we have that

c2
T ∼

1 + c4
X2

m2
PlΛ

6

1− 3c4
X2

m2
PlΛ

6

∼ 1 + 4c̄4Ω2
m

c̄2
0

c̄2
3

. (3.21)

The deviation of the speed of gravity compared to one is small provided c̄4 is small enough.

As we have generalised the Galileon models by requiring that only a fraction of the contents

of the Universe is due to the Galileon, i.e. there is a cosmological constant on top of the
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p p1

p2

Figure 2: A graviton decaying into two photons

Galileon dark energy, the Friedmann equation is modified and the normalisation of the

Hubble rate now implies that

c̄0 − c̄3 =
Ωg − Ωm − Ωr

2
− c̄2

6
− 15c̄4

4
(3.22)

where

Ωg = 1− ΩΛ (3.23)

and ΩΛ is the fraction of the contents of the Universe given by a pure cosmological constant.

When c̄0 ∼ c̄3 � c̄2, we find that

c2
T ∼ 1 + 4c̄4Ω2

m (3.24)

and the binary pulsar constraint is satisfied provided

c̄4 . 4× 10−2. (3.25)

When c4 is negative, the constraint from the propagation of cosmic rays is much stronger

at the 10−17 level. As a result we will only focus on the c4 ≥ 0 case. Given the constraint

of equation (3.25) the cubic term is indeed dominant and we find that the dark energy

equation of state now reads

ωφ =
−3(1− Ωg) + p̄φ
3(1− Ωr − Ωm)

(3.26)

where p̄φ =
pφ

H2m2
Pl

can be estimated to be p̄φ ∼ −4c̄0. The equation of state is close to −1

provided we have

c̄0 ∼
3(Ωg − Ωr − Ωm)

4
(3.27)

meaning that c̄0 is a fixed function of the fraction of dark energy carried by the Galileon.

This implies that c̄2 � 1 in order to guarantee that the cubic term dominates. These

approximations are well verified numerically.

4. Graviton Instability

4.1 Graviton Decay

We have seen that the speed of gravitational waves emitted by binary pulsars can deviate

from unity by a one percent for almost cubic Galileon models even if they are a subdominant
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component of the late universe. In this case, the gravitons go faster than the speed of light

and become unstable: they can decay into massless particles. We focus here on the case

in which the graviton decays into two photons as shown in Figure 2. The interaction

Lagrangian for this process reads

LI = −
√
−g
4

gµνgρσFµρFνσ (4.1)

where Fµν = ∂µAν − ∂νAµ is the field strength of photons. We consider the gravitons as

transverse and traceless perturbations of the metric in a FRW background

ds2 = a2(η)(ηµν + hµν). (4.2)

The interaction Lagrangian has a part which leads to the decay of gravitons when cT > 1

LI ⊃
1

2
hµνFµλF

λ
ν (4.3)

where indices have been raised using ηµν . In the high energy regime where k/a� H, the

graviton modes are given by

hk =
1√
2ωk

e−iωkη (4.4)

where the dispersion relation satisfies

ωk = csk (4.5)

and the graviton field can be decomposed in terms of creation aλ†k and annihilation operators

aλk

hµν =
1

amPl

∑
λ

∫
/d

3
k(ελµνhke

i~k.~xaλk + ε̄λµν h̄ke
−i~k.~xaλ†k ) (4.6)

where ελµν is the on-shell polarisation tensor of the graviton with λ = ± for its two polari-

sations. Similarly the photon field can be expanded as

Aµ =
∑
α

∫
/d

3
k√

2k
(εαµe

−i~k.~xbαk + ε̄αµe
i~k.~xbα†k ) (4.7)

where εαµ is the on-shell polarisation vector with α = ± for the two photon polarisations.

Here we have the 4d contraction k.x = kµxνη
µν . The decay of the graviton of momentum

p into two photons is given by the integral

Γ =
1

2cT p

∫
/d

3
p1

2p1

/d
3
p2

2p2
|M|2/δ(3)

(~p− ~p1 − ~p2)/δ(cT p− p1 − p2) (4.8)

where the matrix element squared is simply

|M|2 =
1

4a2m2
Pl

∑
α1,α2,λ

|(p1.ε̄2)(p2.ελ.ε̄α1) + (p2.ε̄1)(p1.ελ.ε̄α2)− (p1.ελ.p2)(εα1 .εα2)

− (εα1 .ελ.εα2)(p1.p2)|2 (4.9)
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where we have introduced the notation a.ελ.b = aµε
µν
λ bν . We have also summed over the

initial graviton polarisations. Kinematically we find that

(c2
T − 1)p2 = 2p1p2(1− cos θ) (4.10)

where θ is the angle between the two outgoing photons. We see that this process is only

allowed when cT > 1. Moreover we find that the angle θ cannot be arbitrarily small but

must satisfy

cos θ <
2

c2
T

− 1 (4.11)

and the energy of the photons is such that

p2
1

p2
− cT

p1

p
+

c2
T − 1

2(1− cos θ)
= 0. (4.12)

An order of magnitude for the decay rate can be obtained using |M2| ∼ p2
1p

2
2/4a

2M2
P . In

this case we find that

Γ ∼
p3(c2

T − 1)

16πcTm2
Pla

2
I (4.13)

where the phase space integral becomes

I =

∫
dx1d cos θ

x3
1

1− cos θ

1

2x1 − cT
=

∫ 1

cT /2
dx1

x2
1

2cT − x1
(4.14)

where x1 = p1/p. The integral is dominated by a collinear divergence cos θ → 2
c2T
− 1 when

cT → 1 and I ∼ ln(c2
T − 1). Finally we obtain that

Γ ∼
p3(c2

T − 1)

16πcTm2
Pl

(
1

8
(cT − 2)(5cT + 2) + c2

T ln

(
cT

2(cT − 1)

))
(4.15)

which vanishes when cT → 1. The number of gravitons n satisfies the conservation equation

d(a3n)

dη
= −Γa3n. (4.16)

In cosmic time dt = adη and defining the physical momentum pphys = p
a , we find that

dn

dt
+ 3Hn ∼ −

p3
physn(c2

T − 1)

16πcTm2
Pl

(
1

8
(cT − 2)(5cT + 2) + c2

T ln

(
cT

2(cT − 1)

))
. (4.17)

For sources in our galactic environment and neglecting the dilution effect due to the ex-

pansion of the Universe, we find that the number of gravitons of momentum pphys decays

with a characteristic time

τ(pphys) =
16πcTm

2
Pl

p3
phys(c

2
T − 1)

(
1
8(cT − 2)(5cT + 2) + c2

T ln
(

cT
2(cT−1)

)) . (4.18)

For astrophysical sources, this characteristic time far exceeds the age of the Universe and

is not observable unless cT is fine tuned to be extremely close to one.
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k′ k2

k
k1

Figure 3: A graviton Cerenkov producing two photons

4.2 Cerenkov Radiation

The gravitons can also emit two photons by the Cerenkov effect thereby losing energy and

increasing the difficulty of detecting them. This process is shown in Figure 3. In this case,

the interaction Lagrangian contains

LI ⊃
1

16
h2F 2 − 1

4
hµνhρσFµρFνσ −

1

2
hµσh

σ
νF

µ
δ F

νδ (4.19)

and the interaction Hamiltonian is

HI =

∫
d3x : LI : (4.20)

where the operators in the Lagrangian are normal ordered. The emitted energy carried by

the two photons is given by

〈E〉 = 2
∑
α

∫
/d

3
kk〈b†kαbkα〉 (4.21)

where the averaged value is taken over the initial gravitons

〈b†kαbkα〉 = 〈ψλ|b†kαbkα|ψλ〉 (4.22)

and the states are defined by

|ψλ〉 =
1√
2

∫
/d

3
kψ(k1)a†kλ|0〉. (4.23)

We normalise the states such that
∑

λ〈ψλ|ψλ〉 = 1 implying that
∫
/d

3
k|ψ|2 = 1. In pertur-

bation theory and to second order the Cerenkov effect is obtained from

〈b†kαbkα〉 = 2<
(∫ η

−∞
dη2

∫ η2

−∞
dη1〈HI(t1)b†kαbkαHI(t2))〉

)
. (4.24)

Defining the polarisation tensors

Aαα′λλ′(p, p
′) = (ελ.ε̄λ′)((p.εα′)(p

′.ε̄α)− (p.p′)(εα.ε̄α′)) (4.25)

and

Bαα′λλ′(p, p
′) =(p.ελ.ε̄λ′ .ε̄α′)(p

′.ε̄α) + (p′.ελ.ε̄λ′ .ε̄α)(p′.ε̄α′)− (p.ελ.ε̄λ′ .p
′)(ε̄α.ε̄α′)

− (p.p′)(ε̄α.ελ.ε̄
′
λ.ε̄
′
α) (4.26)
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where all the tensors are contracted according to their Lorentz indices and using the integral∣∣∣∣∫ η

−∞
eiωη

′
dη′
∣∣∣∣2 = η/δ(ω) (4.27)

for large values of η, we find that the emitted energy per unit time is given by

d〈E〉
dη

=
1

64m4
Pla

4c4
T

∫
/d

3
k
/d

3
k′

2k′
/d

3
k1

2k1

/d
3
k2

2k2
(4.28)

×
∑

α1,α2,λ′

|ψ(k′)|2/δ(cT (k2 − k′) + k1 + k)/δ
3
( ~k2 − ~k + ~k1 + ~k)|M|2

where the matrix element squared is

|M|2 = (Aα1α2λ′λ(k, k1)− 4Bα1α2λ′λ(k, k1))(Āα1α2λ′λ(k, k1)− 4B̄α1α2λ′λ(k, k1)). (4.29)

The energy k is the one of one tagged photon while the other one has an energy k1. The

initial graviton has momentum k′ and the outgoing one k2. An estimate can be obtained

using |M|2 ∼ k2k2
1. We also take the initial graviton to have a peaked wave function at

k′ = p. The end result is that

d〈E〉
dη
∼

(1− c2
T )2

29 · 3 · 5π3c4
Ta

4

p6

m4
Pl

. (4.30)

In cosmic time, the physical energy of the graviton decays according to

dEphys

dt
+HEphys ∼ −

(1− c2
T )2

29 · 3 · 5π3c9
T

E6
phys

m4
Pl

(4.31)

when cT ∼ 1. The typical time of decay of the energy is

τc(Ephys) =
29 · 3 · 5π3c9

T

(1− c2
T )2

m4
Pl

E5
phys

. (4.32)

Again for astrophysical sources of gravitational waves, this time scale is longer than the

age of the Universe.

5. Time Delay

The gravitons with a speed larger than the speed of light produced by astrophysical sources

would arrive in our detector well in advance of the light signal. Despite this, decays into two

photons and Cerenkov radiation have a negligible effect on their propagation. As a result,

the difference with the speed of light or the speed of neutrinos could affect the observations

of both signals. An important possibility as we enter an era of multi-messenger astronomy2.

For instance, let us consider an explosive event such as the supernova SN1987A. In this case,

the difference of emission times between neutrinos and gravitational waves is estimated to

2This was recently discussed for a difference choice of Horndeski scalar-tensor theory in [39].
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be around 10−3 s [16]. For short gamma ray bursts, the emission times for photons and

gravitational waves could differ by up to 500s [16]. Typically we expect that gravitational

waves would be reaching detectors earlier than neutrinos or photons by an amount

∆t

t
= ∆cT . (5.1)

We have seen that current bounds from binary pulsars only constrain ∆cT at the 10−2

level implying a time delay, for sources one kpc away, of order 30 years. For the supernova

SN19871A, gravitational waves could have reached the earth as early as 1700 years in

advance. The tightest constraints on the difference of speed would come from supernovae

around 1 kpc away with a time difference between neutrinos and gravitons greater than

10−3 s for ∆cT ≤ 10−14. This is potentially twelve orders of magnitude lower than the

binary pulsar bound. For Galileons, this would lead to an extraordinarily fine tuned model,

which would behave like a cubic model, with the coefficient of the quartic term suppressed

by at least fourteen orders of magnitude.

6. Conclusion

We have analysed the behaviour of gravitational waves for Galileon models that include

quartic terms and have a stable Minkowski limit, and shown that only subdominant

Galileon models where a significant part of the dark energy is due to a cosmological constant

can comply with the stringent binary pulsar bounds. When this is the case, the propagating

gravitons do not suffer from particle physics instabilities such as decay into two photons

or Cerenkov radiation. As a result, the speed of gravitons remains superluminal but the

difference between the speed of propagation of gravitons and photons cannot be more than

one percent. In spite of this the time delay between the arrival of gravitational waves and

light can be extremely large, more than a thousand years for supernovae of the SN1987A

type. More reasonable time delays can be expected for closer objects when tighter bounds

on the parameters of the models apply. The observation of such a time delay between

the gravitational and light (or neutrino) signals coming from explosive astrophysical events

would certainly be a hint that new physics requires a modification of GR on large scales.
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