3,842 research outputs found

    Dynamical Casimir effect in curved spacetime

    Get PDF
    A boundary undergoing relativistic motion can create particles from quantum vacuum fluctuations in a phenomenon known as the dynamical Casimir effect. We examine the creation of particles, and more generally the transformation of quantum field states, due to boundary motion in curved spacetime. We provide a novel method enabling the calculation of the effect for a wide range of trajectories and spacetimes. We apply this to the experimental scenario used to detect the dynamical Casimir effect, now adopting the Schwarzschild metric, and find novel resonances in particle creation as a result of the spacetime curvature. Finally, we discuss a potential enhancement of the effect for the phonon field of a Bose-Einstein condensate.Comment: 17 pages, 0 figures, 2 appendice

    Universal quantum modifications to general relativistic time dilation in delocalised clocks

    Full text link
    The theory of relativity associates a proper time with each moving object via its world line. In quantum theory however, such well-defined trajectories are forbidden. After introducing a general characterisation of quantum clocks, we demonstrate that, in the weak-field, low-velocity limit, all "good" quantum clocks experience time dilation as dictated by general relativity when their state of motion is classical (i.e. Gaussian). For nonclassical states of motion, on the other hand, we find that quantum interference effects may give rise to a significant discrepancy between the proper time and the time measured by the clock. The universality of this discrepancy implies that it is not simply a systematic error, but rather a quantum modification to the proper time itself. We also show how the clock's delocalisation leads to a larger uncertainty in the time it measures -- a consequence of the unavoidable entanglement between the clock time and its center-of-mass degrees of freedom. We demonstrate how this lost precision can be recovered by performing a measurement of the clock's state of motion alongside its time reading.Comment: 7 + 10 pages. V3: accepted versio

    Variable-camber systems integration and operational performance of the AFTI/F-111 mission adaptive wing

    Get PDF
    The advanced fighter technology integration, the AFTI/F-111 aircraft, is a preproduction F-111A testbed research airplane that was fitted with a smooth variable-camber mission adaptive wing. The camber was positioned and controlled by flexing the upper skins through rotary actuators and linkages driven by power drive units. The wing camber and control system are described. The measured servoactuator frequency responses are presented along with analytical predictions derived from the integrated characteristics of the control elements. A mission adaptive wing system chronology is used to illustrate and assess the reliability and dependability of the servoactuator system during 1524 hours of ground tests and 145 hours of flight testing

    Mechanization of and experience with a triplex fly-by-wire backup control system

    Get PDF
    A redundant three-axis analog control system was designed and developed to back up a digital fly-by-wire control system for an F-8C airplane. Forty-two flights, involving 58 hours of flight time, were flown by six pilots. The mechanization and operational experience with the backup control system, the problems involved in synchronizing it with the primary system, and the reliability of the system are discussed. The backup control system was dissimilar to the primary system, and it provided satisfactory handling through the flight envelope evaluated. Limited flight tests of a variety of control tasks showed that control was also satisfactory when the backup control system was controlled by a minimum-displacement (force) side stick. The operational reliability of the F-8 digital fly-by-wire control system was satisfactory, with no unintentional downmodes to the backup control system in flight. The ground and flight reliability of the system's components is discussed

    Mechanization of and experience with a triplex fly-by-wire backup control system

    Get PDF
    A redundant three axis analog control system was designed and developed to back up a digital fly by wire control system for an F-8C airplane. The mechanization and operational experience with the backup control system, the problems involved in synchronizing it with the primary system, and the reliability of the system are discussed. The backup control system was dissimilar to the primary system, and it provided satisfactory handling through the flight envelope evaluated. Limited flight tests of a variety of control tasks showed that control was also satisfactory when the backup control system was controlled by a minimum displacement (force) side stick. The operational reliability of the F-8 digital fly by wire control system was satisfactory, with no unintentional downmodes to the backup control system in flight. The ground and flight reliability of the system's components is discussed

    Flight test of a resident backup software system

    Get PDF
    A new fault-tolerant system software concept employing the primary digital computers as host for the backup software portion has been implemented and flight tested in the F-8 digital fly-by-wire airplane. The system was implemented in such a way that essentially no transients occurred in transferring from primary to backup software. This was accomplished without a significant increase in the complexity of the backup software. The primary digital system was frame synchronized, which provided several advantages in implementing the resident backup software system. Since the time of the flight tests, two other flight vehicle programs have made a commitment to incorporate resident backup software similar in nature to the system described in this paper
    corecore