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Abstract
Aboundary undergoing relativisticmotion can create particles fromquantum vacuum fluctuations in
a phenomenon known as the dynamical Casimir effect (DCE).We examine the creation of particles,
andmore generally the transformation of quantum field states, due to boundarymotion in curved
spacetime.We provide a novelmethod enabling the calculation of the effect for awide range of
trajectories and spacetimes.We apply this to the experimental scenario used to detect theDCE, now
adopting the Schwarzschildmetric, andfind novel resonances in particle creation as a result of the
spacetime curvature. Finally, we discuss a potential enhancement of the effect for the phonon field of a
Bose–Einstein condensate.

1. Introduction

The dynamical Casimir effect (DCE) is the name given to the generation of particles due to changes in themode
structure of a quantumfield, resulting either from themotion of a boundary constraining thefield [1] or
changingmaterial properties of amedium containing the field [2] (see [3, 4] for reviews). Physical
implementations include photons generated by acceleratedmirrors [1] (specifically due to changes in
acceleration [5–7]), phononic excitations induced by changes in the external potential holding a Bose–Einstein
condensate (BEC) [8], and photons generated bymodulating the inductance of a superconducting quantum
interference device (SQUID) [9]. The latter implementation has been demonstrated experimentally [10, 11].

The ability of relativisticmotion (of an uncharged, apolar object) to produce nonclassical radiation from the
vacuum [12] provides a strong theoreticalmotivation to study theDCE. In addition, the quantumnature of the
radiation produced has led to investigations of its utility for awide variety of quantum information tasks such as
entanglement generation [13–18], the generation of quantumdiscord [19], the production of cluster states for
quantum computation [20], the performance ofmultipartite quantum gates [21, 22], quantum steering [23] and
quantum communication [24].

TheDCE lies at the interface between quantummechanics and relativity, and can be treatedwithin the
framework of quantumfield theory in curved spacetime (QFTCS) [5, 25]. This allows relativistic considerations
such as the analogy between theDCE and the radiation emitted by a collapsing star [26], or the effect ofmotion
on a quantum clock in the famous twin paradox scenario [27]. In the context of quantum cosmology, one can
consider particle creation due to some expanding boundaries of theUniverse as a kind ofDCE [28], and likewise
for graviton creation in string theoreticmodels withmoving branes [29]. TheDCEdue to themotion of a single
boundary near a black hole has been studied froma thermodynamic perspective [30], calculating the energy flux
in 1+ 1 dimensions and showing it to be negative. Subsequentwork has discussed the prospect that this negative
energyflux is unphysical [31] or unobservable [32].More recently, boundarymotion in a static curved spacetime
was investigated in [33], considering a cavity with a singlemirrormoving briefly over a short distance.However,
a general description of the transformation of quantumfield states due to theDCE in curved spacetime has
remained an open problem.Here, we provide a novelmethodwhich enables the latter to be calculated, and is
applicable to awide range of scenarios. This allows the consideration of new experimentsmanifesting both
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quantumand general-relativistic features, and testingQFTCS.We describe the effect of afinite period ofmotion
through curved spacetime on a quantumfield state contained between two boundaries (e.g. an optical cavity).
Wefirst briefly review previous approaches to the calculation of theDCE (section 2) before describing some
relevant aspects ofQFTCS (section 3), whichwe then use as a framework to obtain themain result (section 4).
We reconsider the experimental scenario used to detect theDCE in section 5, wherewe find novel particle-
creation resonances when one includes spacetime curvature, as well as agreementwith previous results. Then, in
section 6, we briefly sketch the possibility of an enhancement of the effect in a BEC system.

2. Previous approaches to calculating theDCE

Methods for calculating theDCE can be broadly separated into two categories (with some overlap). Hamiltonian
methods such as those described in [3, 34, 35] allow, for example, the consideration of the finite refractive index
of themirrors [7, 36], and the resistive forces acting on themdue to the created particles [4, 37]. On the other
hand, one can consider the solution of the field equations subject to some externally imposed boundary
trajectories, an approach inwhichwe can employQFTCS, andwhich is thereforemore suited to relativistic
considerations.We adopt the latter approach here. Thefirst calculations of theDCEwere carried out in this
manner, exploiting conformal transformations (which leave thefield equation unchanged from its inertial-
coordinate form) to some coordinates in which the boundaries are stationary [1, 5, 38]. This reveals the difficulty
ofmaintaining a particle interpretation during the boundarymotion (see the introductory discussion in [5]), a
problemwhich is equally present for quantum fields in arbitrary spacetimes [25]. A number of exact solutions
using this approach inflat spacetime, in the case of a singlemovingmirror are given in [39].

A distinct variant of this conformal approach is developed in [40], which takes a view ‘local’ to an observer at
the centre of a cavity, which undergoes some time-dependent proper acceleration. The boundary trajectories are
set such that they are at a constant distance in the instantaneous Rindler frame corresponding to the observer’s
proper acceleration at a givenmoment in time.One can then calculate the effect of afinite period of acceleration
on the quantumfield inside the cavity, not with a single conformal coordinate transformation, but rather by
integrating through a continuumof them.

For arbitrary boundarymotion, it is not possible tofind a conformal transformation between inertial
coordinates and some coordinates inwhich the boundaries are stationary. Given trajectories for which such a
transformation cannot be found, one can instead seek the solution to the field equation in terms of
‘instantaneous’mode solutions [34, 41], and then use some approximations particular to the given trajectories
to solve the resulting infinite set of coupled differential equations. This can then be used to connect solutions
before afinite period ofmotion to solutions afterwards—effectively a scattering problem. In appendix A, we
demonstrate the use of thismethod for a particular subset of trajectories, where the problem can be solved
without using their explicit form, andwe show that this coincides with the results obtained using the novel
method outlined in section 4. For general boundary trajectories however, the formermethod cannot be applied
without further approximations, unlike themethodwe present here, where the only condition is that the
boundarymotion is slowwith respect to the speed of light.

3. Framework

Weconsider a cavity containing amassless real scalar fieldΦ, which can be used to approximate the
electromagnetic fieldwhen polarisation effects are negligible [42], or to describe phononic excitations in certain
BEC setups [43].We present our results in 1+ 1 dimensions, though the same arguments can be applied equally
well with an arbitrary number of spatial dimensions as long as theKlein–Gordon equation is separable in space
and time, as is the case for static spacetimes (see appendix B).

First let us consider flat spacetime, with inertial coordinates (t, x). TheKlein–Gordon equation subject to the
stationary boundary conditions F = = F = =( ) ( )t x x t x x, , 01 2 , admits the solutions

f w= -w-( ) [ ( )] ( )t x N x x, e sin 1m m
t

m
i

1
m

and their complex conjugates, where p=N m1m is a normalisation constant, w p= m Lm are themode
frequencies (with = ¼m 1, 2, 3, labelling themode), = -L x x2 1 is the cavity length, andwe have chosen
=c 1. The inner product between solutions is given by [25]

* *òj c j c c j= - ¶ - ¶( ) [ ( ) ( )] ( )i x, d . 2
x

x

t t
1

2

Themode solutions are orthonormal in the sense that f f d=( ), ,m n mn * *f f d= -( ),m n mn and *f f =( ), 0m n .

They are then associatedwith particles via bosonic annihilation and creation operators am and †am, and the
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vacuum state and Fock space are defined in the usual way [25], with the totalfield operator given by

*å f fF = +( ) [ ( ) ( )] ( )†t x a t x a t x, , , . 3
m

m m m m

A linear transformation fromone set ofmode solutions to another is known as a Bogoliubov transformation.
Such transformations arise, for example, when considering changes in coordinate system (such as Lorentz
boosts, or transformations between inertial and accelerated observers), or as a result of spacetime dynamics [25],
or when describing the action of a unitary process whose generatingHamiltonian is an at-most-second-order
polynomial in the creation and annihilation operators (examples include the displacement, squeezing and
beam-splitting operations, and any otherGaussian operation in quantumoptics) [44]. In section 4, wewill use a
Bogoliubov transformation to describe the effect of afinite period of boundarymotion. Gathering themode
solutions in equation (1) into a column vector * *f f f fY = ¼ ¼[ ], , , , , T

1 2 1 2 , we canwrite the Bogoliubov

transformation to some new set of solutions Ỹ as amatrix equation Y = Y˜ S , with (in blockmatrix form)

* *
a b
b a

= =
-

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥≔ ( )†S SKS K K I

I
, , 0

0
, 4

where a f f= ( ˜ ),mn m n and *b f f= -( ˜ ),mn m n are known as the Bogoliubov coefficients, and themiddle equation
(containing the so-called Bogoliubov identities) ensures the orthonormality of the transformed solutions. The
composition ofmultiple transformations is calculated bymultiplying the correspondingmatrices. Equations (4)
identify S as an element of a complex representation of a real symplectic group [45]. Given the Bogoliubov
coefficients, one can compute the corresponding transformation of the creation and annihilation operators, and
therefore the transformation of a given quantum state. In particular, the bmn quantify particle creation due to the
transformation. For example, startingwith a vacuum state, the average number of particles inmodem after a
Bogoliubov transformation is given by  b= å ∣ ∣m n nm

2.
We now consider the cavity to be embedded in some curved spacetime, and assume that the latter admits a

timelikeKilling vector field in the region of interest, so that we can construct awell-definedHilbert space from
the solutions to thefield equation [46]. It is always possible tofind some coordinate system inwhich themetric is
conformallyflat [25], and consequently theKlein–Gordon equation takes the same form as in inertial
coordinates inflat space. Letting (t, x)nowdenote these conformally flat coordinates, onefinds that the
framework above, in particular equations (1)–(3), holds.

4.Main result

Wenowderive the Bogoliubov transformation corresponding to a finite period of cavitymotion in curved
spacetime, before and after which, thefield solutions have the same form as in equation (1). To do this, wemake
the assumption that, for boundarymotionmuch slower than the speed of light, an infinitesimal time-step can be
described as the combination of a displacement effect and a pure phase-evolution of stationarymode solutions.
In otherwords, we assume that the boundaries aremoving slowly enough that they are effectively stationary on
the timescale of amassless particles’ reflection. Then, in the same vein as [40], a differential equation for the total
transformation can be derived.Wefirst define amatrix of frequencies w w w wW ¼ - - ¼≔ ( )diag , , , , ,1 2 1 2 . To
make explicit the dependence on the boundary conditions, let us write this as W( )x x,1 2 and the stationarymode
solutions in equation (1) as f ( )t x x x, ; ,m 1 2 . Using the same phase convention as [47], we canwrite the
transformation from the solutions at f ( )t x x x, ; ,m 1 2 to solutions at f d d d+ + +( )t t x x x x x, ; ,m 1 1 2 2 as

d d dW + + d[ ( ) ]i x x x x t Sexp ,1 1 2 2 , where dS is composed of the Bogoliubov coefficients obtained by taking inner
products between f ( )t x x x, ; ,m 1 2 and f d d+ +( )t x x x x x, ; ,m 1 1 2 2 . If we now considermotion for some finite
time t, and denote the corresponding transformationmatrix by S(t), then composing transformations gives

d d d d d d+ = W + + d( ) [ ( ) ] ( ) ( )S t t x x x x t S x x S texp i , ,1 1 2 2 1 2 , leading to the differential equation

= W + +
⎡
⎣⎢

⎤
⎦⎥ ( )( ) ( )S

t
M

x

t
M

x

t
S

d

d
i

d

d

d

d
, 51 1 2 2

where

* *
*

f
f

f
f=

¶
¶

-
¶
¶

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟≔ ≔ ( )( )

( ) ( )

( ) ( )
( ) ( )M A B

B A
A

x
B

x
, , and , , 6j

j j

j j mn
j m

j
n mn

j m

j
n

andwith j= 1, 2. The formal solution to equation (5) can bewritten using the time-ordered exponential.

Considermotion between t= 0 and t=T, and following [33] let us define òQ = ¢W ¢( ) ( )t t td
t

0
. Now, sinceΩ is a

diagonalmatrix we can solve equation (5) in amanner analogous to the interaction picture of quantum
mechanics, giving
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 ò å= Q

=

- Q Q
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥( ) ( )( ) ( ) ( ) ( )S T t M

x

t
e exp d e e

d

d
. 7T

T

j

t j t ji

0 1

2
i i

Given our assumption that the coordinate velocities of the boundaries
x

t

d

d

j are small (with respect to the speed
of light) throughout themotion, we can use theDyson series to express the time-ordered exponential in

equation (7) tofirst order in
x

t

d

d

j . The Bogoliubov coefficients are then

òåò òa d= +w w w

=

- ¢ ¢ - ¢⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭

( )( ) ( ) [ ( ) ( )]t A
x

t
ae d e

d

d
, 8mn

t t
mn

j

T

mn
j t t t ji d

1

2

0

i d
T

m

t

m n
0 0

òåò òb = w w w

=

- ¢ ¢ + ¢ ( )( ) ( ) [ ( ) ( )]t B
x

t
be d e

d

d
. 8mn

t t

j

T

mn
j t t t ji d

1

2

0

i d
T

m

t

m n
0 0

These coefficients satisfy the identities given by equation (4). In appendix Awe compare this result with that
obtained using a differentmethod (described in section 2), to consider the subset of trajectories where L is
constant, inwhich case one can approximately solve the field equations tofind the Bogoliubov coefficients
without using the specific functional formof the trajectory.We show that the answer thus obtained coincides
with equation (8). For trajectories where L is not constant, one cannot always apply themethod described in
section 2. A generalisation of equation (8) to arbitrarilymany spatial dimensions is given in appendix B. In the
next sectionwe apply ourmethod introduced here to one such trajectory, and recover known results in the flat-
space limit.

One can see the physical role played by each term in equation (8); in amn they give respectively the total phase
accrued andmode-mixing due to themotion of each boundary, while the two terms of bmn correspond to
particle creation by the twomoving boundaries. Integrating by parts, one can see a correspondence between
equation (8) above and equation (6) in [40].

We exploit the simplicity of the Klein–Gordon equation in conformally flat coordinates, but trajectories in
coordinatesmore natural to a given problem can bemapped to ones in the conformally flat coordinates.
Furthermore, the temporal coordinate t is used as a bookkeeping coordinate, which can be related to the proper
time of an observer in the usual way. Both of these points are illustrated in the following example.

5. Example: an oscillating boundary in the presence of amassive body

Wenow consider a scenario where, in the presence of a stationary, spherically symmetric,massive body, one
boundary isfixedwhile the other oscillates in the direction radial to the body. This can be used tomodel an
experiment on the surface of the Earth, ignoring the Earth’s rotation. TheDCEdue to boundary oscillation in
flat spacetime is a well-studied problem, e.g. [41, 48, 49], and indeed the oscillating-boundary scenario was used
to observe theDCE experimentally [10]. There, onefinds a resonance in the creation of particles when the
boundary oscillates at the sum-frequency of twomodes. This resonance has been examined theoretically in a
weak gravitational field using a short-time approximation [33]. Here, we use our novelmethod tofind simple
expressions for the bmn coefficients, revealing further resonances due to the spacetime curvature.

We describe the spacetime curvature due to themassive body using the Schwarzschildmetric, given by
= - +( )

( )
s f r t rd d d

f r
2 2 1 2 with -( ) ≔f r r r1 S , where =r GM2S is the Schwarzschild radius of the body.

One can relate the proper time τ of, for example, some stationary experimenter at a radial distance re to the
bookkeeping time coordinate tusing t = ( )f r te .We consider one boundary at =r r1 0 to befixed and the
other boundary at d= + +( ) ( )[ ( )]r t r L t12 0 0 tomove from t= 0 to t=T such that there is a sinusoidal
oscillation of the proper length, i.e.

n= +( ) ˜ ( ) ( )L t L A tsin 9p p,0

with ò=
+

( )
Lp r

r L r

f r,0
d

0

0 0
. For simplicity of presentation, it is assumed the boundary returns to its initial position at

t=T, i.e. n p=T p for some Îp . Assuming the oscillation amplitude to bemuch smaller than the distance to
the centre of the gravitating body, onefinds

n= + + =
+

+ +
+

( ) ( )
( )

( )
˜ ( )

( )

r t r L A t A
f r L

f r L
Asin with , 10

r

r L

2 0 0
0 0

0 0 2
s

0 0

tofirst order in d ( )t .We further assume e ≔ A L 10 and e  r rS , which are easily satisfied in experiments
at the Earth’s surface.Wewill work tofirst order in r rS and second order in ε. For reference, in SQUID-based
DCE experiments one can achieve a fractional change of the (effective) length as large as∼0.1 [10, 50], and at the
surface of the Earth, we have ~ -r r 10S

9.
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Tofind the bmn coefficients, we use equation (8b), employing the so-called tortoise coordinate

+ -≔x r r ln 1r

rS
S

, wherein themetric is conformallyflat, giving

b en w w
w w n

n
w w n

=
+

- -
+ -

+
+ +

-

-
w

w w w w

w w

+ +

+

⎧
⎨⎪
⎩⎪

⎫
⎬⎪
⎭⎪( )

( )
( )

( )
( ) ( )

( )
( ) ( )f r

f r L

A r

r L
e i

1 e e 1
. 11mn

T
m n

p T

m n m n

T
i 0

0 0

i

2 2
S

0 0
2

i

2

2 2

n
m n m n

m n

Thefirst term in equation (11) persists in the limit of zero curvature (i.e. r 0S ), and exhibits the familiar
resonance for a driving frequency of n w w= +m n. The second termgives a novel contribution due to curvature,
with its own resonance at the subharmonic n w w= +( )m n

1

2
5, though this is strongly suppressed by the factor of

+( )Ar r LS 0 0
2. Including higher orders of ε and r rS into the calculation of bmn, onefinds further subharmonic

resonances. These resonances are a result of the nonlinear relationship between the proper length and the length
in the conformallyflat coordinate -x x2 1. Stated inmore physical terms, the length relevant to the
experimenter, the proper length, differs nontrivially from the appropriate notion of length for amassless particle
(sometimes called the ‘radar length’ [51]), and this difference depends on the curvature of the spacetime,
quantified in this case by rS. A single-frequency sinusoidalmodulation of the proper length corresponds to a
complexmotion in the conformally-flat length. This complexmotion can bewritten as aweighted sumof
sinusoidal terms, eachwith a different frequency, and each leading to a new resonance. Conversely, one could
imagine the experimenter contriving a complexmodulation of the proper length such that themotion in the x-
coordinate is exactly sinusoidal, inwhich case only the standard resonance would remain.

Considering a driving frequency at a resonance of the first term, i.e. n w w= +q r for some q and r, and then

considering the regime n T 1, one obtains b e d= - p
+ +( ) ( )∣ ∣ ( )

mn T1 2mn
L r

r

f r

L m n q r
2 1

4

2

,
0 s

0
2

0

0
.We thusfind a

curvature-induced reduction in particle number, as noted in [33], andwe recover equation (4.5) of [41] in the
flat-spacetime limit. This reduction is in linewith the physical interpretation of the novel resonances noted
above; the sinusoidal driving from the perspective of the laboratory in not sinusoidal in the physically relevant
coordinate x.

If we nowdrive the boundary at the novel resonance, n w w= +( )q r
1

2
for some q and r, the coefficient for

which the curvature-dependent contribution is largest is

b e e
p

=
+

-
- -

+
+

+ +
w

⎡
⎣⎢

⎤
⎦⎥

( )
( )

( )
( )( ) ( )( )

( )
qr f r

f r L f r q r

r T

f r L r L
ie

2

3

1 1

8
. 12qr

T
p

i 0
2

0 0 0

S

0 0 0 0
2

q

From equation (12), one can see that it is in principle possible to conduct an experiment for long enough that the
curvature-dependent contribution dominates, since in the bmn formodes other than q and r (equation (11)), the
value ofT only serves to set the phases. Taking themassive body to be the Earth, and considering the parameters
used in the SQUID setup of [27] at the surface, onefinds that the observation of this resonancewould take 1017

times longer than observation of the usual parametric resonance, which is evidently impracticable. Instead of a
photonicDCE,we can consider phononic excitations of a BEC. There are cases where relativistic effects too
small to detect with an optical cavitymay be brought into an observable regimewith a BEC setup [52, 53], and by
preparing a suitable probe state andmeasuring its transformation due to themotion, one can profit from the
increased sensitivity afforded by quantummetrology [54, 55].We are currently studying the feasibility of such a
scheme, andwe present thefirst steps of this study in section 6.Nonetheless, the in-principle detectability of the
curvature contribution is an incentive for further study of this and other trajectories.

6. Amplification of the effect in aBEC

As noted in section 1,modulating the trapping potential of a BEC affects themode structure of the phonons,
leading to aDCE. This has been implemented in [8], for example, where correlated phonon pairs are produced
by sinusoidalmodulation of the trap potential.We now give a cursory argument for the possibility of using this
platform to detect the effect described in section 5. In the following, we reintroduce the speed of light c in order
to comparemagnitudes.

Using a relativisticmean-field description of the BEC, it has been shown that under certain conditions (see
equation (62) of [43], and appendix A of [52]), the phononfield obeys theKlein–Gordon equationwith the
effectivemetric:

5
To avoid a potential confusion, we emphasise that this half-wavelength resonance is distinct from the fact that, when driving themirror at

n w w= +m n, one obtains a peak in the output spectrum of an initially-empty cavity at n 2 (or the nearest frequencies to that, ifm + n
is odd).
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r= + -mn mn
m n

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥ ( )g

c

c
g

c

c

v v

c
1 , 13

s

s
2

2 2

where ρ, cs and mv are respectively the density, speed of sound and four-velocity of themean-field (see [43] for
detailed definitions).We assume the confining potential to be a ‘box trap’ [56], so that the phonon field
effectively resides in a cavity, andwe consider a 1+ 1D Schwarzschild spacetime as in the previous section.We
now seek the coordinates which are conformally flat with respect to the effectivemetric mng . As afirst, rather
coarse, approximationwe assume the BECmean-field to be completely static, so that cs and ρ are constant and

=m ( ( ) )v c f r , 0 . The latter results from the condition = -m
mv v c2. Applying these approximations to

equation (13), onefinds that the conformally flat coordinates (t, x) are given by is the usual Schwarzschild time

coordinate and + -⎡
⎣⎢

⎤
⎦⎥( )≔x r r ln 1c

c

r

rs
s s

. The latter is simply a rescaling of the tortoise coordinate used in

section 5 by a factor of c

cs
. Taking the speed of sound to be on the order of -1 cm s 1 [8], we have ~ 10c

c
10

s
.

Considering the formof equation (8b), we see that the bmn are also scaled by this factor, greatly enhancing the
magnitude of the effect, and perhaps enabling the detection of the novel resonances predicted in section 5.

7.Discussion

Wehave given a novel, simplemethodwhich allows the calculation of theDCEdue to boundarymotion in
curved spacetime.We have presented themethod in 1+ 1 dimensions for simplicity, with an extension to higher
dimensions given in appendix B. Aswell as giving some general formulas for the Bogoliubov transformation of
thefield state, we have considered the experimental scenario used to observe theDCE [10], found a novel
resonance in particle creation if one includes spacetime curvature, and briefly considered the possibility of
amplifying the effect in a BEC.Ourmethod can therefore be used to consider a range of experimentsmanifesting
quantumand general relativistic effects. It can also be applied to extend investigations into the effect ofmotion
on quantumproperties such as entanglement, for example [47], to analyse the effect of spacetime curvature.We
nownote some limitations of our approach, and some possible extensions.

By prescribing the boundary trajectories, we ignore the backreaction (and therefore resistive force) on the
mirrors due to particle creation. In light of the additional curvature-dependent terms in the example above, we
see that such a backreationwill be affected by the presence of gravity, increasing or decreasing the ‘quantum
vacuum friction’ [4, 57] resisting themotion of an object through spacetime.

Our assumption of perfectly-reflecting boundaries implies that the purity of the field state inside the cavity is
unaffected by themotion. Relaxing this assumptionwould allow a consideration of coupling between intra-
cavitymodes and global ones, and the resulting loss of purity. The result would by a fully-relativistic description
of decoherence induced by non-inertialmotion, including the effect of gravity.

It would be of interest to see if our approach can bemodified to consider asymptotically-staticmotion of a
single boundary through curved space. This would require the approach described in sections 3 and 4 to be
adapted for the continuous-spectrum case. One could then compare trajectories in curved spacetimewith
knownflat-spacetime results such as those described in [39] in order to investigate how the presence of
spacetime curvature affects those results.

Finally, we note that our analysis of the BEC implementationwas a sketch for the purpose of showing the
possible benefit of using such a platform, and that the subject deserves amuch fuller treatment, with serious
attention to experimental details. It seems likely that the static-BEC assumptionwill need to be refined, and one
may need to consider the effect of both the static spacetime curvature and the dynamic trapping potential on the
spatiotemporal dependence of themean-field properties (see [58] for an example of the latter effect).

Acknowledgments

The authors would like to thankDominik Šafránek, Tupac Bravo, David Jennings, Luis CBarbado andDavid E
Bruschi for useful discussions and comments.MPEL acknowledges support from the EPSRC via theControlled
QuantumDynamics CDT (EP/G037043/1).

AppendixA. Comparisonwith Bogoliubov coefficients obtained using an ‘instantaneous
basis’ ofmode solutions: the constant-length case

Here, we consider the subset of cavity trajectories for which - =( ) ( )x t x t L2 1 , a constant, and demonstrate a
different way of calculating the Bogoliubov coefficients (used for example in [41]), showing that this coincides
with the result given in themain article.
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As in ourmain article, the coordinate system inwhich themetric is conformallyflat is denoted (t, x), and the
positions of the cavity walls in these coordinates are given by ( )x t1 and ( )x t2 . In the samemanner as [59], we
move to new coordinates (t, q)with -( ) ≔ ( )q t x x x t, 1 , and thus

¶ - ¶  ¶ + - ¶ + ¶ + ¶ ¶( ˙ ) ˙ ( )q q q1 ¨ 2 , A1t x t q q q t
2 2 2 2 2

where a dot denotes the derivative with respect to t. To incorporate the assumption of low-velocity, i.e. ∣ ˙∣q 1,
we assume that we canwrite h=˙( ) ˙ ( )q t y t for some y(t) and h  1. Tofirst order in η, the Klein–Gordon
equation is then

¶ - ¶ + ¶ + ¶ ¶ F =[ ˙ ] ( ) ( )q q t q¨ 2 , 0 A2t q q q t
2 2

with the (now time-independent) boundary conditions F = F =( ) ( )t t L, 0 , 0.We seek solutionsj ( )t q,m to
equation (A2)using an ‘instantaneous basis’ consisting of the spatial part of the stationary-cavity solutions given
in equation (1):

åj w=( ) ( ) ( ) ( )t q Q t N q, sin . A3m
p

mp p p

For a cavity which is stationary for t 0 and t T , we have the conditions

j w= w-( ) ( ) ( )t q N q a0, e sin , A4m m
t

m
i m

 åj a b w= +w w-( ) { ( ˜ ˜ ) ( )} ( )t T q N q b, e e sin , A4m
p

p mp
t

mp
t

p
i ip p

i.e.

 d= w-( ) ( )Q t a0 e , A5mn
t

mn
i m

 a b= +w w-( ) ˜ ˜ ( )Q t T be e , A5mn mn
t

mn
ti in n

where ãmn and b̃mn are the coefficients encoding how the post-motion solutions can bewritten in terms of the
pre-motion ones.We now insert the solutions in equation (A3) into (A2) and integrate out the spatial part to
obtain an infinite set of coupled differential equations for theQmn(t). To do this, we use the following identities

ò w w
d
w

=( ) ( ) ( )q N q N q ad sin sin
2

, A6
L

m m n n
mn

n0

ò w w =( ) ( ) ( )q N q N q g bd cos sin , A6
L

m m n n mn
0

where

=

¹
p

- -
+ -

+
⎪

⎪

⎧
⎨
⎩

≔ ( )[ ( ) ]
( )( )

g
m n

m n

0 for

for .
A7mn mn

m n m n

1 1 m n

We thus obtain

åw w+ = +( ˙ ˙ ) ( )Q Q q Q q Q g¨ 2 2 ¨ . A8mn n mn n
p

mp mp pn
2

Seeking solutions up tofirst order in ηwewrite h= +( ) ( )Q Q Qmn mn mn
0 1 , and hence obtain equations for the zero

andfirst order parts:

w+ = ( )( ) ( )Q Q a¨ 0, A9mn n mn
0 2 0

åw w+ = +( ˙ ˙ ) ( )( ) ( ) ( ) ( )Q Q y Q y Q g b¨ 2 2 ¨ . A9mn n mn n
p

mp mp pn
1 2 1 0 0

The condition given in equation (A5a) then becomes

 d= =w-( ) ( ) ( )( ) ( )Q t Q t0 e and 0 0. A10mn
t

mn mn
0 i 1m

Assuming continuity ofQmn(t) and ˙ ( )Q tmn at t= 0, we can use these conditions and their derivatives to obtain

d= w-( ) ( )( )Q t ae , A11mn
t

mn
0 i m

ò w w w w= + - -w w w w w w- - - - +( ) [( ) ( ) ] ˙ ( ) ( )( ) ( ) ( )Q t g s y s bd e e e e . A11mn mn

t

m n
s T

m n
s T1

0

i i i im n n m n n

Defining w w- +≔ ( )A gmn m n mn and w w-≔ ( )B gmn m n mn, we have

ò= - +w w w w w w- - - - +( ) [ ] ˙ ( ) ( )( ) ( ) ( )Q t s A B y sd e e e e . A12mn

t

mn
s T

mn
s T1

0

i i i im n n m n n
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We then obtain the ãmn and b̃mn by using the condition given in equation (A5b) and continuity at t=T

òa d= + w w- -˜ ˙ ( ) ( )( )A t x t ad e , A13mn mn mn

T
t

0

i
1

m n

òb = w w- +˜ ˙ ( ) ( )( )B t x t bd e . A13mn mn

T
t

0

i
1

m n

These correspond to the transformation from the pre-motionmode solutions to the post-motion solutions,
where both sets of solutions are evaluated at t=T. To transform frompre-motion solutions evaluated at t= 0 to
post-motion solutions evaluated at t=T, we ‘undo’ the phase evolution of the pre-motion solutions from t= 0
to t=T, giving the Bogoliubov coefficients

òa d= +w w w- -
⎡
⎣⎢

⎤
⎦⎥˙ ( ) ( )( )A t x t ae d e , A14mn

T
mn mn

T
ti

0

i
1

m m n

òb = w w w- + ˙ ( ) ( )( )B t x t be d e . A14mn
T

mn

T
ti

0

i
1

m m n

To show that equation (A14) coincides with themethod given in themain article, wefirst calculate thematrices
( )A j and ( )B j defined in equation (6):

=
=

¹
=

=
- ¹w w

w w

w w
w w

-
- -

+
⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎧
⎨
⎩

( )( ) ( )
( )

( )

( )
A

m n

m n
A

m n

m n
a

0 for

for

0 for

for
, A15mn

L
mn

L

1
1

2m n
m n

m n

m n

m n

w w
w w

w w
w w

= -
-

+
=

+

+( )
( ) ( )

( )( ) ( )B
L

B
L

b
1

, A15mn

m n
m n

m n
mn

m n

m n

1 2

wherewe have used the time-independence of the inner product [25].We note the similarity between these and
equation (22) of [53]. Now, since =L̇ 0, we have =˙ ˙x x1 2, and then solving equation (5) tofirst order in ẋ1one
obtains

òa d= + +w w w- -
⎡
⎣⎢

⎤
⎦⎥( ) ˙ ( ) ( )( ) ( ) ( )A A t x t ae d e , A16mn

T
mn mn mn

T
ti 1 2

0

i
1

m m n

òb = +w w w- +( ) ˙ ( ) ( )( ) ( ) ( )B B t x t be d e . A16mn
T

mn mn

T
ti 1 2

0

i
1

m m n

Comparing this to equation (A14), we can see that the Bogoliubov coefficients obtained using the twomethods
coincide if = +( ) ( )A A A1 2 and = +( ) ( )B B B1 2 , which indeed holds, as we can see by considering
equations (A7) and (A15).

Appendix B.Generalisation toD spatial dimensions

As noted in themain text, it is not necessary to restrict ourselves to 1+ 1 dimenensions. Consider now the case of
a static spacetimewithD spatial dimensions. There then exists some coordinates ( )t x, (wherex has
components x k and = ¼k D1, 2, , ) such that theKlein–Gordon equation is separable, i.e. one can seek
solutions in the form f  = ( ) ( ) ( )t x T t X x,m m m (where the labelm is no longer a single number). In this case, ¶t

is a timelike Killing vector, and (ignoring normalisation)wehave = w-( )T t em
ti m for some wm. As in section 4,

wewrite the solutions as f   ( )t x x x, ; ,m 1 2 , wherex1 and
x2 denote the boundary positions inD spatial

dimensions, andwe can now follow exactly the same procedure as before, with dS now comprised of inner
products between f   ( )t x x x, ; ,m 1 2 and f d d  +   + ( )t x x x x x, ; ,m 1 1 2 2 , and the total transformation then
satisfies themulti-dimensional generalisation of equation (5)

= W + +
⎡
⎣⎢

⎤
⎦⎥ ( )( ) ( )S

t
M

x

t
M

x

t
S

d

d
i

d

d

d

d
, B1k

k

k

k
1 1 2 2

where the sumover k is implicit, and

* *
*

f
f

f
f=

¶

¶
-

¶

¶

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ) ≔ ( ) ≔ ( )( )

( ) ( )

( ) ( )
( ) ( )M

A B

B A
A

x
B

x
, , and , , B2k

j k
j

k
j

k
j

k
j k

j
mn

m

j
k n k

j
mn

m

j
k n

with j= 1, 2.
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