4,496 research outputs found

    The TF Limit for Rapidly Rotating Bose Gases in Anharmonic Traps

    Full text link
    Starting from the full many body Hamiltonian we derive the leading order energy and density asymptotics for the ground state of a dilute, rotating Bose gas in an anharmonic trap in the ` Thomas Fermi' (TF) limit when the Gross-Pitaevskii coupling parameter and/or the rotation velocity tend to infinity. Although the many-body wave function is expected to have a complicated phase, the leading order contribution to the energy can be computed by minimizing a simple functional of the density alone

    On the flux phase conjecture at half-filling: an improved proof

    Get PDF
    We present a simplification of Lieb's proof of the flux phase conjecture for interacting fermion systems -- such as the Hubbard model --, at half filling on a general class of graphs. The main ingredient is a procedure which transforms a class of fermionic Hamiltonians into reflection positive form. The method can also be applied to other problems, which we briefly illustrate with two examples concerning the tVt-V model and an extended Falicov-Kimball model.Comment: 23 pages, Latex, uses epsf.sty to include 3 eps figures, to appear in J. Stat. Phys., Dec. 199

    The Ground States of Large Quantum Dots in Magnetic Fields

    Full text link
    The quantum mechanical ground state of a 2D NN-electron system in a confining potential V(x)=Kv(x)V(x)=Kv(x) (KK is a coupling constant) and a homogeneous magnetic field BB is studied in the high density limit NN\to\infty, KK\to \infty with K/NK/N fixed. It is proved that the ground state energy and electronic density can be computed {\it exactly} in this limit by minimizing simple functionals of the density. There are three such functionals depending on the way B/NB/N varies as NN\to\infty: A 2D Thomas-Fermi (TF) theory applies in the case B/N0B/N\to 0; if B/Nconst.0B/N\to{\rm const.}\neq 0 the correct limit theory is a modified BB-dependent TF model, and the case B/NB/N\to\infty is described by a ``classical'' continuum electrostatic theory. For homogeneous potentials this last model describes also the weak coupling limit K/N0K/N\to 0 for arbitrary BB. Important steps in the proof are the derivation of a new Lieb-Thirring inequality for the sum of eigenvalues of single particle Hamiltonians in 2D with magnetic fields, and an estimation of the exchange-correlation energy. For this last estimate we study a model of classical point charges with electrostatic interactions that provides a lower bound for the true quantum mechanical energy.Comment: 57 pages, Plain tex, 5 figures in separate uufil

    Surface and bulk critical behaviour of the XY chain in a transverse field

    Full text link
    The surface magnetization of the quantum XY chain in a transverse field is found for arbitrary nearest neighbour interactions in closed form. This allows to derive the bulk phase diagram in a simple way. The magnetic surface behaviour and the bulk correlation length are found exactly.Comment: 5 pages, to be published in J. Phys.

    Stability and Instability of Relativistic Electrons in Classical Electro magnetic Fields

    Full text link
    The stability of matter composed of electrons and static nuclei is investigated for a relativistic dynamics for the electrons given by a suitably projected Dirac operator and with Coulomb interactions. In addition there is an arbitrary classical magnetic field of finite energy. Despite the previously known facts that ordinary nonrelativistic matter with magnetic fields, or relativistic matter without magnetic fields is already unstable when the fine structure constant, is too large it is noteworthy that the combination of the two is still stable provided the projection onto the positive energy states of the Dirac operator, which defines the electron, is chosen properly. A good choice is to include the magnetic field in the definition. A bad choice, which always leads to instability, is the usual one in which the positive energy states are defined by the free Dirac operator. Both assertions are proved here.Comment: LaTeX fil

    The ground state of a general electron-phonon Hamiltonian is a spin singlet

    Full text link
    The many-body ground state of a very general class of electron-phonon Hamiltonians is proven to contain a spin singlet (for an even number of electrons on a finite lattice). The phonons interact with the electronic system in two different ways---there is an interaction with the local electronic charge and there is a functional dependence of the electronic hopping Hamiltonian on the phonon coordinates. The phonon potential energy may include anharmonic terms, and the electron-phonon couplings and the hopping matrix elements may be nonlinear functions of the phonon coordinates. If the hopping Hamiltonian is assumed to have no phonon coordinate dependence, then the ground state is also shown to be unique, implying that there are no ground-state level crossings, and that the ground-state energy is an analytic function of the parameters in the Hamiltonian. In particular, in a finite system any self-trapping transition is a smooth crossover not accompanied by a nonanalytical change in the ground state. The spin-singlet theorem applies to the Su-Schrieffer-Heeger model and both the spin-singlet and uniqueness theorems apply to the Holstein and attractive Hubbard models as special cases. These results hold in all dimensions --- even on a general graph without periodic lattice structure.Comment: 25 pages, no figures, plainte

    Checkerboards, stripes and corner energies in spin models with competing interactions

    Full text link
    We study the zero temperature phase diagram of Ising spin systems in two dimensions in the presence of competing interactions, long range antiferromagnetic and nearest neighbor ferromagnetic of strength J. We first introduce the notion of a "corner energy" which shows, when the antiferromagnetic interaction decays faster than the fourth power of the distance, that a striped state is favored with respect to a checkerboard state when J is close to J_c, the transition to the ferromagnetic state, i.e., when the length scales of the uniformly magnetized domains become large. Next, we perform detailed analytic computations on the energies of the striped and checkerboard states in the cases of antiferromagnetic interactions with exponential decay and with power law decay r^{-p}, p>2, that depend on the Manhattan distance instead of the Euclidean distance. We prove that the striped phase is always favored compared to the checkerboard phase when the scale of the ground state structure is very large. This happens for J\lesssim J_c if p>3, and for J sufficiently large if 2<p<=3. Many of our considerations involving rigorous bounds carry over to dimensions greater than two and to more general short-range ferromagnetic interactions.Comment: 21 pages, 3 figure

    Ferromagnetism of the Hubbard Model at Strong Coupling in the Hartree-Fock Approximation

    Full text link
    As a contribution to the study of Hartree-Fock theory we prove rigorously that the Hartree-Fock approximation to the ground state of the d-dimensional Hubbard model leads to saturated ferromagnetism when the particle density (more precisely, the chemical potential mu) is small and the coupling constant U is large, but finite. This ferromagnetism contradicts the known fact that there is no magnetization at low density, for any U, and thus shows that HF theory is wrong in this case. As in the usual Hartree-Fock theory we restrict attention to Slater determinants that are eigenvectors of the z-component of the total spin, {S}_z = sum_x n_{x,\uparrow} - n_{x,\downarrow}, and we find that the choice 2{S}_z = N = particle number gives the lowest energy at fixed 0 < mu < 4d.Comment: v2: Published version. 30 pages latex. Changes in title, abstract, introductio

    Improved Lieb-Oxford exchange-correlation inequality with gradient correction

    Full text link
    We prove a Lieb-Oxford-type inequality on the indirect part of the Coulomb energy of a general many-particle quantum state, with a lower constant than the original statement but involving an additional gradient correction. The result is similar to a recent inequality of Benguria, Bley and Loss, except that the correction term is purely local, which is more usual in density functional theory. In an appendix, we discuss the connection between the indirect energy and the classical Jellium energy for constant densities. We show that they differ by an explicit shift due to the long range of the Coulomb potential.Comment: Final version to appear in Physical Review A. Compared to the very first version, this one contains an appendix discussing the link with the Jellium proble
    corecore