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We present a simplification of Lieb's proof of the flux phase conjecture for inter- 
acting fermion systems--such as the Hubbard model--at half-filling on a 
general class of graphs. The main ingredient is a procedure which transforms a 
class of fermionic Hamiltonians into reflection-positive form. The method can 
also be applied to other problems, which we briefly illustrate with two examples 
concerning the t - V  model and an extended Falicov-Kimball model. 
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1. I N T R O D U C T I O N  

The main purpose of this paper is to give a simplified version of Lieb's 
proof of the flux phase conjecture in ref. 1, which at the same time allows 
for some straightforward generalizations. Those readers who are mainly 
interested in the basic argument, rather than in learning about the more 
general description of it, are advised to think about a finite regular square 
lattice on a cylinder while reading this and the next section. Once the argu- 
ment is properly understood the generalizations become straightforward. 

The physical context where the first conjectures appeared 12~ is reviewed 
in ref. 3. For  a history and a more general formulation of the problem we 
refer to the first mathematical studies on the subject by Lieb ~41 and Lieb 
and Loss. ts~ 
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Consider a system of spinless fermions (adding spin poses no problems) 
on a finite set of sites A, at half-filling, and with a Hamiltonian of the form 

H= ~ tx.,,c~.cy + Hi, , (1.1) 
x ,  ) ' c A  

Here, t.,:,, is a Hermitian matrix. We will explain later what kind of interac- 
tions Hi,t are allowed (see Section 2). For now, let us just say that the 
usual on-site Hubbard interaction is among them (i.e., for spin-l/2 fermions 
one takes Hi, t = U~.,-~A (n.,. t -- l/2)(n.,. ~ -- 1/2)), and that only gauge- 
invariant interactions will be considered. 

Let e be the graph with set of vertices A and the set of edges { (x ,  y )  ] 
t.,.,. 4:0}. A circuit in the graph e i s  a finite sequence ),= (x I ..... xk) of distinct 
vertices, with the property that (x i ,  xi+ ~), for i = 1 ..... k - 1, and (xk,  xj ) 
are all edges in the graph. By representing the circuit as an ordered 
sequence we have implicitly given it one of the two possible orientations 
(for k > 2 ) .  

The ground-state energy of(1.1)  depends on the, in general complex, 
parameters t.,:,, only through their modulus IGy[ and the flux variables q~. 
for circuits ~,, which are defined as follows: 

ir 

q5 = ~ qL,. ....... ,, mod2~  (1.2) 
i = l  

where y = ( x t  ..... x,), and t,.,.=exp(iq~,:,.)[t,.y[. This follows from ref. 5, 
Lemma 2.1, where it was proved that there is a unitary transformation 
relating any two Hamiltonians with phases {qL,-;, I ( x Y ) e F }  that satisfy 
(1.2) with the same fluxes qs. for all y. This unitary transformation is of the 
form 

C~. ~ iO~ ~ . e - i O . ~ c  e �9 c.,., c,. ~--~ .,. (1.3) 

and is called a gauge transformation. We will often write {~o.,..,.} instead of 

{<p_,..,. I (xy)  
The .flux phase probh, m can now be formulated as follows: for fixed 

values of the moduli It.,..,. 1, find the phases ~0.,_,. (or, equivalently, the fluxes 
q~.) for which the ground-state energy of the Hamiltonian (1.1) attains its 
minimal value. We cannot solve this problem in general. In fact, we do not 
expect that there is a simple solution in general. We are looking for a solu- 
tion in terms of a basic set of circuits ~ (e.g., the plaquettes of the square 
lattice). The set ~ should be not too large and consist only of "simple" 
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circuits, so that the solution ( - t h e  values of the fluxes through the circuits 
in ~)  can be easily described. On the other hand, cg should contain enough 
circuits so that their flux uniquely determines ~ r  for all circuits ),. 

Definit ion 1.1. A set cg of circuits in a graph F is called a basic set 
of circuits if for any two configurations of phases {~0.,.,.} and {~0',.,.} that 
produce the same fluxes { q~. [ ~ c cr there exists a gauge transformation 
relating { ~o.,..,.} and { ~o.',..,.}, i.e., cp.',..,. = ~0.,..,. + 0 , . -  0.,., for some real 0.,., x c A. 

Lieb and Loss showed (ref. 5, Lemma 2.1 ) that the set of all circuits of 
a graph satisfies Definition 1.1. Often, it is more convenient to work with 
a rather small subset of the set of all circuits. For examples of good choices 
of the set cg we refer to Section 3. 

The class of models that we treat in this paper is described by the 
following two assumptions on the graph F together with the configuration 
of I t,.,.l's associated with the bonds: 

A1. All circuits ),=(x~ ..... x,,) in F a r e  of even length, i.e., n=2k .  This 
is equivalent to requiring that the graph F is bipartite, but we will not use 
explicitly a decomposition into two sublattices. 

A2. There is a basic set o f  circuits ~ such that for each ?, ~ cg there is 
an embedding of the graph in R z~, for some D, such that there is a ( D -  1 )- 
dimensional reflection hyperplane P not containing any vertex of F, with 
the following properties: 

1. The whole graph F, together with the configuration of ]t.,..~.l's, 
is invariant under reflection through P. 

2. All circuits ),ec~ that are intersected by P (i.e., not all vertices are 
in one of the two half-spaces) are, up to orientation, invariant 
under reflection through P. In particular, ), is invariant under 
reflection through P. 

The embedding of the graph in R ~) used to describe assumption A2 is 
not essential. We only introduce it in order to simplify the description. 

Before we can state our main result we have to say what we mean by 
"flux configuration" and "canonical flux configuration." 

D e f i n i t i o n  1.2 ( Flux c o n f i g u r a t i o n  }. Let { @r} be a set of fluxes 
(i.e., real numbers mod 2~) through all circuits of the graph. We say that 
{ @r} is a flux configurations if there exist a set of phases {~0,:,.} such that 
(1.2) holds for all ~,. 

D e f i n i t i o n  1.3 ( C a n o n i c a l  f lux  c o n f i g u r a t i o n  ). Assume that 
F satisfies assumptions A1 and A2. A flux configuration {q~r} is called 
canonical if there is a set cg of basic circuits satisfying A2 and such that for 
all y e cg, @~. = 0 if ), has length 2 mod 4, and q~r = n if ?, has length 0 mod 4. 
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Fig. I. Two different embeddings of a graph in the plane. Tile solid lines indicate the edges. 
The dashed lines show a triangulation. The Lieb-Loss flux through the circuit ( 1, 2, 3, 4, 5, 6, 
7, 8) is 0 for the first and n for the second embedding. 

Note that it is not true, in general, that in a canonical flux configura- 
tion all circuits satisfy r = 0 if ), has length 2 mod 4, and Cr = n if y has 
length 0 mod 4. 

The arguments in Section 2 will show that, for graphs that satisfy the 
assumptions A1 and A2 there always exists a canonical flux configuration. 

The definition of canonical flux configuration given here is different 
from the one put forward in ref. 5 for planar graphs embedded in the plane. 
A planar graph embedded in the plane can be triangulated and Lieb and 
Loss ~5) note that the number of triangles enclosed by a circuit is independent 
of the triangulation, and they define a flux configuration by putting a flux 
n/2 in each triangle. The resulting flux configuration for the original graph, 
however, depends on the embedding in the plane one starts from (see Fig. 1 
for an example). Our definition is restricted to graphs that have a basic set 
of circuits satisfying assumptions A1 and A2. They need not be planar, but, 
on the other hand, many planar graphs do not have a canonical flux con- 
figuration according to the definition given here. Also, we do not know 
whether there are graphs for which different choices of ~ lead to different 
canonical flux configurations. 

Our main result is the following theorem. 

T h e o r e m  1.4. Under assumptions A1 and A2 we have the following: 

(i) There exists a configuration of phases " ")~ ~p.,.>.~ such that the 
corresponding configuration of fluxes is a canonical configuration. 

(ii) For the Hamiltonians ( l . l )  we have 

inf 2o(H( { c#_,.,,} ) ) .  = 2o(H( { r )).,.>. j (1.4) 
{ ~.,.~. ) 

where 2o(H) denotes the smallest eigenvalue of H, i.e., canonical flux con- 
figurations minimize the ground-state energy. 
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Quite generally we expect the energy-minimizing flux configuration to 
be unique up to gauge transformations, but we have not studied the ques- 
tion of uniqueness. Nonuniqueness could arise in two ways. If there is more 
than one canonical flux configuration, the minimum will be attained in 
both. The other possibility is that there is a noncanonical minimizing flux 
configuration. 

2. P R O O F  OF T H E  M A I N  R E S U L T  

First, we only consider noninteracting spinless fermions. The Hamiltonian 
is (1.1) with Hint = 0. We will indicate at the end of this section how spin 
and certain interactions can be included. 

Statement (i) of Theorem 1.4, for the case of planar graphs, is a conse- 
quence of ref. 5, Lemma 2.2. For the more general situation considered here 
(i) will be a byproduct of the proof of (ii). 

The main argument is an application of the Dyson-Lieb-Simon Lemma 
in the following form. 

Lemma 2.1. Let A, B, C~ ..... C,, be a collection of d xd complex 
matrices (17 could be infinite) with the following properties: A and B are 
Hermitian, and for all i, C; is real and Z;  C; | C~ is symmetric (as a d 2 x d 2 
matrix). Let ).o(A, B) denote the lowest eigenvalue of the matrix 

Then 

T(A, B ) - A  @1 +1 |  Ci| (2.1) 
i 

;,o(A, B) >/�89 ,4) + ~-o(g, B)) (2.2) 

where A denotes the matrix obtained from A by complex conjugation of 
the matrix elements. In particular 

).o(A, B) ~> min(2o(A, A), ),o(/~, B)) (2.3) 

In the formulation of this lemma in ref. 6 the matrices A and B are 
required to have real matrix elements. It is crucial for our application that 
we conside{ complex matrices A and B. This is a straightforward extension. 
For a proof of Lemma 2.1 in the zero-temperature form stated here see 
ref. 7. 

Before we can apply this lemma we have to bring the Hamiltonian 
into the form (2.1). This will be achieved in three steps, each consisting of 
an elementary transformation. 
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Given a circuit of the set ~g we consider an embedding of the graph in 
R ~ and a reflection plane P of the circuit (it exists by assumption). This 
defines a left part (L), a right part (R), and a set (M) of vertices which 
belong to edges (x,  y )  with x E L  and ) , eR  or x e R  and ) ,eL.  The three 
steps are: 

(i) A Jordan-Wigner-type transformation 

(ii) A particle-hole transformation 

(iii) A gauge transformation 

We know from experience that one easily gets confused while performing 
this sequence of transformations. Therefore, we now spell them out in 
detail and indicate the purpose of each of them. 

Step (i). We introduce new operators d.~ defined by 

d,.=(--1)N'c,.,  d*,. = c~.( - 1) NL (2.4) 

for all x e A, and where Na is the total particle number in the left half of 
the lattice, i.e., NL=Y,.~L c*.,&,.. If one considers fermions with spin, NL 

t . In has to be the total particle number on the left, i.e., N a =Z.,-~L.r c,.~c,.~. 
one dimension, the transformation defined in (2.4) is similar to the usual 
Jordan-Wigner transformation. Strictly speaking, however, even in one 
dimension, it is different. A slightly different transformation was employed 
by several authors, e.g., in ref. 9. Note, however, that in ref. 9 the paragraph 
about fermions contains a mistake. With the transformation employed there 
the hopping terms on the right acquire the opposite sign of the hopping 
terms on the left, and thus the Hamiltonian is not in reflection-positive form. 

Using the canonical anticommutation relations of the c operators, one 
easily finds that the d operators satisfy the following algebra: 

{d"~ 'd"}=~" ' l  if x, y e L  or x, y e R  
{d.,_, d,,} = {dl, d;} = 0  J 

[d,*., d,.] = 0  ] 
�9 I if x e L ,  y e R  or -ceR, y e L  

[d, . ,  d,.] = [d.*,., = 0  

The operators d,.* acting on Fock space (associated to A) can be identified 
with operators of the form 

d,.* |  for x e L  

|  for x e R  
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acting on the tensor product space ~ | Jt~n, where each factor corresponds 
to the Fock space associated to the left and right parts of the lattice. In 
terms of the d.~ the Hamiltonian can be considered as acting on ~L | ~R 
and takes the form 

H =  ~ * t,:,.d.,.d,, (2.5) 
x ,  y E A  

= ~" t_,:,,d~.d,, + ~" t,:,,d*.,.d,, + ~" tx.,.d*,.d,, (2.6) 
x, yr L x, 3, E R x, ) 'E~4 

The third term of (2.6) describes the interaction between the left and the 
right halves of the lattice and is of the tensor product form as in (2.1). 

Step (ii). The second step is a simple particle-hole transformation 
on the right half of the lattice, i.e., for all x ~ R, 

d,.~--,d*.,., d*,.~-,d,. (2.7) 

while the d~  with x e L remain unchanged. The Hamiltonian becomes 

H =  Z t,,dt.,-d., ,+ Z ( - ~ ) d ~ . d , ,  (2.8) 
x, y E L  x . y ~ R  

+ ~ t t . . . .  t.,.,,d ,d.,, + ~ t,.,,d,.d,, (2.9) 
x E L ,  ) , E R  x E  R, 3, E L  

Step (iii). Finally, we perform a gauge transformation with the pur- 
pose of making the hopping matrix elements across the reflection plane all 
negative. A transformation that achieves this is the following: 

e -,. d,, 
(2.10) 

d y  i----4 - ei~a.,-ydv 

for sites y ~ R which are connected to a site x ~ L (i.e., given y ~ R, there 
exist an x ~ L such that t,_,, :# 0). 

! 

Therefore we have a new set of hopping matrix elements { t.,,,.} with the 
same fluxes as the original configuration { t,.~.} (because a gauge transfor- 
mation does not change the fluxes) and It.'.,,] = [tx.,,T, in terms of which the 
Hamiltonian is 

H =  Z ' * t J , . d , , +  * . d , .d, .  (2.11) 
.x', y E  L x ,  .I'E R 

Y It.,,,I ' * --  '. d . , . d , , -  Z Itx:.l d.,.d,. (2.12) 
x E L ,  y ~ R  x~iR v E L  
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We denote by ~L (respectively qsR) the set of fluxes through basic 
circuits which are entirely in L (respectively R), and by ~ g  the flux con- 
figuration for basic circuits which have the same reflection plane P. These 
fluxes refer to a particular orientation of the basic circuits: first orient in an 
arbitrary way all circuits on the left, and for the circuits on the right take 
the orientation opposite to the one obtained by reflection of the left part. 
For the ones in the middle choose an arbitrary orientation. For a fixed 
configuration of I t,:,,I, the ground-state energy depends on the phases ~0.,,,. 
only through the fluxes and we will denote this energy by Eo(q~z, q5 M, qsR). 

We adopt the convention that the same set of fluxes q~L when it 
appears as the third argument of Eo assigns the flux to a circuit on the right 
that is associated by reflection to the circuit on the left. We can now state 
the basic lemma. 

Lamina 2.2. Assume that the configuration {[t.,..,.]} is invariant 
under reflections. Then 

EO(qbL, q~M, flSR)>~ �89 qS~', qbR)+ Eo(q~L, qS~'t ', - -~L) )  (2.13) 

where ~ is the canonical flux configuration through the basic circuits 
intersecting P. 

Proof. The proof is a direct application of Lemma 2.1 to the 
Hamiltonian in the form (2.12), while carefully keeping track of the flux 
configurations. The operator T(A, B) of (2.1) is given by 

A Y" ' * = t,.:.d, d , 
x, v~  L 

B= Z (-t',,)dld 
X. y E .R 

Y,c,| Y It.,-,.I * * = '. d,d.,. + Y, It.',..,.ld,.d,. 
i x ~ L . . v ~ R  x ~ R ,  y ~ L  

and 20(A, ,~) is the ground-state energy of the Hamiltonian 

T ( A , A )  ~ , , 7 , = t,.yd.,.d,. + ~ t.,.yd,.i.,.flrly ~ 
x. y ~ L  x. ) , E L  

- Y.  I t , , . I  * * '. d , . d y -  ~, It,-.,.I d.,.dy 
x ~  L. 3,~ R x ~  R, 3,~ L 

= 2 r t , t t,.:d.,.d,. + ~ t.,:,.d r~.,,,drc.,., 
x, y E L  x . y ~ L  

- Z It.,,.I * * ' d.,.d,.- Z It.,:,,I d,.d,. 
a '~L ,  y ~ R  x ~ R ,  y e L  
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2n- I 

2 t l  / -  

n+2 

I 

/ n-I 

r(3) ~ r(2) 

r(4) - ~ - I~l) 

Fig. 2. By assumption, when a circuit is intersected by the reflection plane, it is rellected into 
itself. Such circuits constitute the "middle part" of the graph. The figure also shows a circuit 
(1, 2, 3, 4) in the left part of the graph and its reflection (r(l) ,  r(2), r(3), r(4)) on the right. 

where r(x) denotes the reflection of  the site x th rough  P. This can be 
writ ten back  in the form of  (2.12) with a new configurat ion of hopp ing  
matr ix  elements ti,'..~, which do not ,  in general, have the same fluxes as the 
original hoppings.  We now determine the new configurat ion of  fluxes 

i!  t l  ( q ~ ,  q~M, ~ R ) .  

First, take a circuit in the middle par t  7 =  (x~ ..... x2, ) .  We label the 
vertices such that  xt ..... x,, e R and x,,+~ ..... x2,, e L (see Fig. 2). The  edges 
intersected by P are (x2,,, x ~ ) and (x , , ,  x,, + ~ ) .  The corresponding te rm in 
the t ransformed Hami l ton ian  is 

2.'1 - -  1 ,'l - -  I 

E r t 1 t,., ...... , d,. d.,.,+, + ~ ( - tl,.,...,.,+,) d.,.,d,-,+* (2.14) 
i = n + l  i ~ l  

' * d *  ' * d *  -It.,.,~,.,.,Id.,.2o . , . , - I t  ...... , ...... I d  ...... ~ ..... +h .c .  (2.15 

and the cor responding  flux is the original one 

2 n  211 - -  1 n - -  1 

~:. = E qo ........ ~+, = L 9',-, ...... , + Y'. ~o.',...,.+, rood 2n 
i =  1 i = 1 1 +  I / = |  

After reflection it becomes 

2 J l -  1 2 n  - -  1 

' ' * ( 2 . 1 6  

i = n + l  i ~ n + l  

' d ...... ~d.,. +h .c .  (2.17 d.,.,~,d.,., - I .,-o., ...... I * * 
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The new flux on ~ is 

2 n  - -  I 2 n  - -  1 

Z Z 
i = n + l  i = n + l  

' ) (n - qL,-,.,-,+, mod 2n 

which is equal to (n - 1 ) n, i.e., the canonical flux through the circuit ),. 
Next, we consider a circuit on the left y = (xl ..... x2,,), oriented from x~ 

to x2,, (17 is an integer), and its reflection r (y )=  (r(xl) ..... r(x,,,)) on the right 
oriented from r(x2,,) to r(xl)  (see Fig. 2). After the transformations (i)-(iii) 
the corresponding terms in the Hamiltonian are (with the convention 

? ( 2 n  + 1 ~ ?t" 1 ) 

211 

A =  ~. t',.,.,.,+,d].d,.,+,+h.c. (2.18) 
i = 1  

~ r  

B = Z ( --t'r,.,-,+,,. ,.,.,-,,) d,*.,.,.,+,, d,.,.,, o + h.c. (2.19) 
i = 1  

and the fluxes through y and r(y) are, respectively, 

2 n  2 n  

�9 . . . . . .  . . . . . .  , 

i = 1  i = l  

211 211 

(~r(,') = E (P"(Ai+I)."(-"/} = 2 q)tr(-"/+l)."(-"i) 
i = l  i=1 

When we apply Lemma 2.1 we have to replace B by 

2 n  2 n  

, "t A =  ~" t,.,. ..,,+, dr,.,-,I d,,.,,+,, + h'c" = 2 tl,,. ..,.,+,d*,.,,. +,,) a,.,_,.,, + 
i = l  i = 1  

(2.20) 

t t  B 2 n  t The new corresponding flux through r(y) is ~ , -~ . l -Z ;= t  ( n - c p  ....... .+,), 
which is equal to _ q s .  In particular, if y on the left has the flux 0 or n, 
then r(y) on the right has the same flux. 

One argues similarly for 2o(/~, B). This ends the proof of Lemma 2.2. | 

Proof  o f  Theorem 1.4. By assumption, the configuration { [t.,-,.I} is 
invariant under reflections through all reflection planes of the circuits in ~. 
The crucial property is that for each basic circuit there is a reflection plane 
that intersects it and for which the conditions of Lemma 2.2 are satisfied. 
The theorem is then proved as an application of Lemma 2.2. The lemma 
yields the existence of a configuration of fluxes for which the ground-state 
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energy is at least as low, while at the same time the new flux configuration 
is produced from the old one by either 

(qsL, cbM, r ~ (r qS~l, - - r  

or (~L, q>U, r ~-' ( -- ~R, qS~tl, q~R) (2.21) 

In both cases the flux in all circuits intersected by P becomes canonical. By 
the same argument as in ref. 6, Proof  of Theorem 4.2, or ref. 8, one can 
now prove that the minimum is attained in a canonical configuration by 
showing that, in an energy-minimizing configuration, the maximum 
number of circuits in W' with canonical flux must be the total number of cir- 
cuits in <g. Let {q~.} be a minimizing configuration with a given number 
N,.( { cb~,} ) of circuits (in <g) with canonical flux, and let Yo ~ ~' be a circuit 
that does not have canonical flux in that configuration. Let P be a reflec- 
tion plane leaving ~'o invariant. After reflection the new configurations in 
(2.21) both have the same minimal energy. Then, writing {~,}---(q5 t ,  
~M, r we have 

N,.(~L, ~ } ,  -- r + N,.( --~R, q~], q~R) 

=2(N,.(q~L, q~M, qSR)+ N,.(q~t I) --N,.(qSg)) 

AS Yo is a circuit in M that does not have canonical flux in r while in 
r  it does (just like any other circuit of <s intersected by P), it is clear that 

( c )  N,.(qSM)--N,.(q~M)>~ 1. We conclude that at least one of the new mini- 
mizing configurations has strictly more circuits with canonical flux than 
{ q~r}' This argument is then repeated until all ~, e <g have canonical flux. l 

Remarks. (a) Finite temperatures. Lemma 2.1 holds with 2o 
replaced by - log tr exp ( - f i l l ) .  Thus Lemma 2.2 holds also with the ground- 
state energy E o replaced by the free energy (at half-filling), and of course its 
proof and the proof of Theorem 1.4 as the same. 

(b) h~teracting systems. It is straightforward to generalize the proofs 
to include spin and some class of interactions. One can accommodate, for 
example, a Hubbard term 

E h.,.= E h,.+ E h,. 
x ~ A  . x ' ~ L  x E R  

t where h.,. = U(n_,. t - �89 1 - �89 n,., = c.,.,c,.~, a = T, ~, and U is an arbitrary 
real number. Another example is a nearest neighbor repulsive potential 

E h,:,.= E h,,,+ E h,,.+ E 
x v r A .x'. y E L x ,  y ~ M x ,  .1' u g 
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where h,_v= V(n,. t +n.,.s -1)(n.,, t +n.,q - 1 )  with V a positive number. 
Longer range interactions and spin-dependent forces such as a Heisenberg 
antiferromagnetic exchange term can also be included. These cases are also 
discussed in ref. 1. Let us describe what happens in the transformations 
(i)-(iii). In the first step (i) one has to replace (2.4) by 

t _ t d,., = ( - 1 )NL c,.,, d.,_, - c.,.,( - 1 )g, 

with NL=Y~x~L(nxT +nx~). In step (ii) for xeR ,  n , . , ~ l - n , . ~ .  The 
Hubbard term remains unchanged, but the nearest neighbor interaction 
becomes 

E h..= E h.,- E h.,+ E h., 
x .  y E  A x .  y E L  x .  3,~ M x .  ) ' e  R 

Thus the interaction between the left and right parts of the lattice is of the 
form Zi  Ci | Ci with the correct sign because V>0.  The third step (iii)is 
a gauge transformation which does not affect the interaction terms. 
Summarizing, we see that we can bring the Hamiltonians into the form 
(2.1). Then the proofs of Lemma 2.2 and Theorem 1.4 are unchanged. 

We believe that these remarks are useful in other problems. We 
illustrate this by two examples: the t-V model and a generalized Falicov- 
Kimball model. 

(c) Sp&less t-V model. This model of spinless electrons has 
Hamiltonian (1.1) with the interaction part equal to V52,-..,,~A (n,.--1/2) 
(17,.-- 1/2), where the sum is over nearest neighbors only and V is positive. 
The remarks above show that on a cubic lattice, i.e., D = 3, with periodic 
boundary conditions in all directions and a flux configuration through each 
square plaquette equal to n, and [t.,:v[ = t  for all bonds ( x y ) ,  it can be 
brought in a reflection-positive form with respect to all reflection planes. 
Then it is an exercise to see that the methods of ref. 6 used for the Heisen- 
berg model can be used also in the present situation to prove that, when 
t/V is small enough, there is long-range order at low temperature f l - l .  
More precisely if ( �9 )A it is the thermal average with periodic boundary 
conditions, one can prove ( - 1 )1-,-I + I .v[(  ( n  x _ 1/2)01.,.- 1/2)) ,1 > c > 0, for 
all x and y in A, for some strictly positive constant c independent of A. (We 
note that in the present case the uniform density theorem c~~ applies, so, in 
particular, (n,.),~ = 1/2 for all fl, t and V.) In fact this result is true for any 
flux configuration and one can also add a small chemical potential term 
(see refs. 11-13 for recent rigorous results). Although our proof does not 
work in D = 2, the result is expected to hold also in two dimensions. 
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(d) One can also consider the case of spin-l/2 electrons with attrac- 
tive Hubbard interaction and a nearest neighbor repulsion, i.e., a t -V-U 
model, and it can be shown that for low enough temperatures, in three or 
more dimensions, for t/V small enough, and U+4V~<0, the model has 
checkerboard long-range order of the electron density by following the 
proof of ref. 6 for the Heisenberg antiferromagnet. Here again, checker- 
board long-range order is expected to occur also in D = 2, but the proof 
given here does not directly apply. 

(e) Extended FaHcov-Kimball model. The extended Falicov- 
Kimball model we wish to mention has the Hamiltonian 

H({w,.})= Z t,..,,c].~c,.,+ U ~. h.,.+ V ~, h.,:,. (2.22) 
x .  ) , c A . , r =  "f. J. x E A  x .  y E A  

+ U' Y' (n,. r +17,. 1 - 1)(2wx- 1) (2.23) 
.'r 11 

where {w,.} is a configuration of random variables with values 0 or 1, 
describing the position of classical particles (say, nuclei or fermions with a 
large effective mass; we refer to ref. 14 for a discussion of the physical inter- 
pretations). The usual Falicov-Kimball model has U =  V= 0 and only one 
type of electron (say, the spin-up electrons). The energy of a nuclear con- 
figuration {w,.} is 20(H({w,.})), the smallest eigenvalue of (2.23)in the 
total Fock space of the electrons. A theorem of Kennedy and Lieb ~4~ 
asserts that for the usual Falicov-Kimball model on a bipartite lattice 
A = A w B union of two sublattices A and B, for all U' the minimum of 
20(H({w,.})) is attained for one of the two configurations (w,.=0, x e A, 
w,.= 1, x~B)  or (w,.=0, x~B,  w.,.= 1, x~A) .  This is true irrespective of 
the boundary conditions or the flux configuration (provided it exists). 
Many more detailed results are known, but it is only this one that we will 
now generalize. 

We take a D-dimensional hypercubic lattice with periodic boundary 
conditions in all directions and set the flux configuration to be equal to 
in all square plaquettes, and also the canonical flux through the circuits 
created by the periodic boundary conditions. We explain in the next section 
why this can be done and why it is the correct choice. We set I t , , .I--t .  
By performing the sequence of transformations (i)-(iii) we bring the 
Hamiltonian to a reflection-positive form. The only term we have not 
discussed so far is the last one in (2.23) (the one with coupling constant 
U'). After the transformations (i)-(iii) it becomes 

U' ~ (n,. r + n , . + - l ) ( 2 w x - 1 ) - U '  ~ (nxt +n . , .~ - l ) (2w. , . -1 )  (2.24) 
x e L  x ~ R  
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where L and R refer to the left and right parts respectively, of the lattice 
with respect to some reflection plane P. Let r(x) denote the site obtained 
by reflection of x through P. It is convenient to use the variables s , .= 
2w.,.-1 and write Eo({S.,.}.,_~L,{s.,.}.,.ER)=),o(H({w.,.})). By applying 
Lemma 2.1 one obtains 

Eo({S,} {s,} 
~> �89 {s',.}.,-~n)+Eo({Si~.}.,.~t., {s,.}.,.~R)) (2.25) 

" and for x �9 L, si~. = By repeated reflec- where for x �9 R, s,.= --Sr~x~ --S,.c,.~. 
tions (across all reflection planes in all D directions), one concludes that 
the minimum energy is attained in the checkerboard configurations of the 
variables s.,. (or, equivalently, of the w.,.). Note that this result holds for all 
U, U', and for all V>~ 0. 

3. E X A M P L E S  A N D  D I S C U S S I O N S  

In this section we comment on and illustrate Theorem 1.4 by various 
examples. First let us consider several planar graphs. 

1. Planar graphs. The most basic case is that of a square lattice with 
periodic boundary conditions in one direction and an even number of sites 
in that direction, say the horizontal one. Thus we have a cylinder (which 
can be embedded in the plane). A basic set of circuits ~ is constituted by 
the square plaquettes of length 17 = 4 and one big circle along a basis of the 
cylinder. We emphasize that if one takes only the square plaquettes, then 
the flux through circuits that wind around the cylinder is not uniquely 
determined, and thus the set of square plaquettes alone is not a basic set 
of circuits. Obviously one can find reflection planes that satisfy our 
assumptions: these are the vertical planes that cut the cylinder into two 
equal halves. Furthermore, in order to have It,_,.[ invariant under reflection 
across these planes we must require that {[t,_,,[, ( x y )  horizontal} has 
period 2 in the horizontal direction, and { It,,:,. [, < xv ) vertical} is translation 
invariant in the horizontal direction. There is no constraint for It.,.,.[ along 
the vertical direction. A canonical flux configuration can be described by 
putting a flux n through each square plaquette and n ( N - 1 )  through the 
basis of length 2N of the cylinder. Theorem 1.4 states that this flux con- 
figuration minimizes the ground-state energy. 

As Lieb points out]  II one can obtain the optimal flux on other graphs 
simply by "erasing," that is, letting It.,..,,[ ~ 0 on some edges in a way that 
preserves the assumptions. For  example, one can get the hexagonal lattice 
with periodic boundary conditions where the flux through each hexagon is 0 
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Fig. 3. 

/t  

/ t  

It. 7. 

0 

A graph with nonuniform optimal flux. Periodic boundary conditions are assumed in 
the horizontal direction. 

and n ( N - 1 )  through the basis. Many planar graphs that cannot be 
obtained by this procedure satisfy our assumptions, however. An example 
is given in Fig. 3. 

In all these examples one can also take periodic boundary conditions 
in both the vertical and horizontal directions. This wraps the graph on a 
torus; thus, it is no longer planar. A new circuit has to be added to c~, 
namely a circuit winding around the torus in the "vertical" direction. The 
reason for this will become clear in the next paragraph. 

2. Basic sets o f  circuits. Before discussing more general examples it 
is useful to indicate a way of checking that a set cr is a basic set of circuits. 
We describe a sufficient condition. We start by representing any oriented 
circuit y as a sum over all edges ej of the graph 

y--E jej 
J 

The edges have a fixed reference orientation and the ej are equal to 0 if e) 
does not belong to y, + 1 (respectively, - l) if ej occurs in y with the same 
(respectively, opposite) orientation than y. We require that any circuit y 
can be decomposed as 

y = ~  aiy i (3.1) 
i 

with integer a i and Yi e ~. We call such sets cg generating. 
If the flux configuration is specified for all yi ~ cg, then, using (3.1), we 

can compute the flux through y, namely q~y, ~,.aztb;. Since the flux 



760 Macris and Nachtergaele 

configuration through y~ e cg corresponds to a set of phases, different decom- 
positions of), lead to the same flux. Once the flux is determined for all circuits, 
it follows from Lemma 2.1 in ref. 5 that ~ is a basic set of circuits. 

The property that cr is generating can be expressed as a simple 
topological property of the surface (two-dimensional complex) consisting 
of the set of vertices A, the edges in F, and the set of triangles obtained by 
triangulation of all the circuits y ~ cg. The set (g is generating if and only if 
the first homology group over the integers of this surface is trivial (see, e.g., 
ref. 15). If one views the complex as a continuous two-dimensional 
manifold, this corresponds to the property that any closed curve can be 
contracted to a point. 

3. Non planar examples. For nonplanar graphs it is not obvious 
that there exist phases which correspond to the canonical flux. Let us con- 
sider, e.g., a single D-dimensional hypercube. We show that in general for 
a given configuration of fluxes through the two-dimensional squares, one 
cannot find corresponding phases for the t,.,,. The number of k-dimensional 
subcubes is equal to 2D-kD!/(D-k)! k !. Indeed, a k-dimensional subcube 
is determined by the set of points (x~ ..... xn) with 0 ~<xi, ~< 1 ..... 0 ~< xik ~< 1, 
and x j = 0  or 1 for jC:it . . .i , .  So we have D! / (D-k ) ! k !  choices for 
i~ . - . i  k and 2 ~  choices for the xj. Thus the number of flux variables 
through squares is 2n-3D(D-1),  and the number of phases on the edges 
is 2 D- ~D. In general one will have to solve a system of equations which is 
overdetermined if 2 ~  ~D < 2n-3D(D-- 1), i.e., D > 5. However, for the 
canonical flux configuration there always exists a solution of this system of 
equations. In fact our proof of the flux phase conjecture constructs such a 
solution for any graph satisfying the assumptions of Theorem 1.4. 

In particular, the hypercubic lattice falls into our class of graphs. 
In order to satisfy the assumptions we have to take periodic boundary 
conditions in D - 1  or D directions. A generating set of circuits is con- 
stituted by all the square plaquettes and D -  1 circuits that are the D -  1 
coordinate axes in the periodic directions. The canonical flux configuration 
is unique and equals n for each plaquette and Ir(Ni- 1 ) through the D - 1 
circuits in the periodic directions of lengths 2N~, i = 1,..., D -  1. One can of 
course imagine many nonplanar graphs satisfying assumptions A1 and A2. 
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