9,035 research outputs found

    Formal proof of the AVM-1 microprocessor using the concept of generic interpreters

    Get PDF
    A microprocessor designated AVM-1 was designed to demonstrate the use of generic interpreters in verifying hierarchically decomposed microprocessor specifications. This report is intended to document the high-order language (HOL) code verifying AVM-1. The organization of the proof is discussed and some technical details concerning the execution of the proof scripts in HOL are presented. The proof scripts used to verify AVM-1 are also presented

    Non-Markovian entanglement dynamics in the presence of system-bath coherence

    Full text link
    A complete treatment of the entanglement of two-level systems, which evolves through the contact with a thermal bath, must include the fact that the system and the bath are not fully separable. Therefore, quantum coherent superpositions of system and bath states, which are almost never fully included in theoretical models, are invariably present when an entangled state is prepared experimentally. We show their importance for the time evolution of the entanglement of two qubits coupled to independent baths. In addition, our treatment is able to handle slow and low-temperature thermal baths.Comment: Accepted for publication in Phys. Rev. Lett

    Fault tolerant architectures for integrated aircraft electronics systems

    Get PDF
    Work into possible architectures for future flight control computer systems is described. Ada for Fault-Tolerant Systems, the NETS Network Error-Tolerant System architecture, and voting in asynchronous systems are covered

    A transnational gaze

    Get PDF
    In the decade since this journal was founded, major demographic shifts caused shifts in migration studies. Against this backdrop, the questions migration scholars ask and the analytical and methodological tools we use to answer them have changed dramatically. In this essay, I take an idiosyncratic look at these developments and propose directions for the future. I focus on the analytical rewards of using a transnational perspective to study migration, on the importance of considering space and scale in our work, and on bringing culture more centrally back into our conversations. I highlight opportunities at interdisciplinary intersections that, can move our field forward in new productive directions if we take advantage of them

    The formal verification of generic interpreters

    Get PDF
    The task assignment 3 of the design and validation of digital flight control systems suitable for fly-by-wire applications is studied. Task 3 is associated with formal verification of embedded systems. In particular, results are presented that provide a methodological approach to microprocessor verification. A hierarchical decomposition strategy for specifying microprocessors is also presented. A theory of generic interpreters is presented that can be used to model microprocessor behavior. The generic interpreter theory abstracts away the details of instruction functionality, leaving a general model of what an interpreter does

    Design of a fault tolerant airborne digital computer. Volume 1: Architecture

    Get PDF
    This volume is concerned with the architecture of a fault tolerant digital computer for an advanced commercial aircraft. All of the computations of the aircraft, including those presently carried out by analogue techniques, are to be carried out in this digital computer. Among the important qualities of the computer are the following: (1) The capacity is to be matched to the aircraft environment. (2) The reliability is to be selectively matched to the criticality and deadline requirements of each of the computations. (3) The system is to be readily expandable. contractible, and (4) The design is to appropriate to post 1975 technology. Three candidate architectures are discussed and assessed in terms of the above qualities. Of the three candidates, a newly conceived architecture, Software Implemented Fault Tolerance (SIFT), provides the best match to the above qualities. In addition SIFT is particularly simple and believable. The other candidates, Bus Checker System (BUCS), also newly conceived in this project, and the Hopkins multiprocessor are potentially more efficient than SIFT in the use of redundancy, but otherwise are not as attractive

    Nuclear Spins as Quantum Memory in Semiconductor Nanostructures

    Full text link
    We theoretically consider solid state nuclear spins in a semiconductor nanostructure environment as long-lived, high-fidelity quantum memory. In particular, we calculate, in the limit of a strong applied magnetic field, the fidelity versus time of P donor nuclear spins in random bath environments of Si and GaAs, and the lifetime of excited intrinsic spins in polarized Si and GaAs environments. In the former situation, the nuclear spin dephases due to spectral diffusion induced by the dipolar interaction among nuclei in the bath. We calculate the decay of nuclear spin quantum memory in the context of Hahn and Carr-Purcell-Meiboom-Gill (CPMG) refocused spin echoes using a formally exact cluster expansion technique which has previously been successful in dealing with electron spin dephasing in a solid state nuclear spin bath. With decoherence dominated by transverse dephasing (T2), we find it feasible to maintain high fidelity (losses of less than 10^{-6}) quantum memory on nuclear spins for times of the order of 100 microseconds (GaAs:P) and 1 to 2 milliseconds (natural Si:P) using CPMG pulse sequences of just a few (~2-4) applied pulses. We also consider the complementary situation of a central flipped intrinsic nuclear spin in a bath of completely polarized nuclear spins where decoherence is caused by the direct flip-flop of the central spin with spins in the bath. Exact numerical calculations that include a sufficiently large neighborhood of surrounding nuclei show lifetimes on the order of 1-5 ms for both GaAs and natural Si. Our calculated nuclear spin coherence times may have significance for solid state quantum computer architectures using localized electron spins in semiconductors where nuclear spins have been proposed for quantum memory storage

    Twisted Conjugacy Classes in Abelian Extensions of Certain Linear Groups

    Full text link
    Given an automorphism ϕ:ΓΓ\phi:\Gamma\to \Gamma, one has an action of Γ\Gamma on itself by ϕ\phi-twisted conjugacy, namely, g.x=gxϕ(g1)g.x=gx\phi(g^{-1}). The orbits of this action are called ϕ\phi-twisted conjugacy classes. One says that Γ\Gamma has the RR_\infty-property if there are infinitely many ϕ\phi-twisted conjugacy classes for every automorphism ϕ\phi of Γ\Gamma. In this paper we show that SL(n,Z)(n,\mathbb{Z}) and its congruence subgroups have the RR_\infty-property. Further we show that any (countable) abelian extension of Γ\Gamma has the RR_\infty-property where Γ\Gamma is a torsion free non-elementary hyperbolic group, or SL(n,Z)(n,\mathbb{Z}), Sp(2n,Z)(2n,\mathbb{Z}) or a principal congruence subgroup of SL(n,Z)(n,\mathbb{Z}) or the fundamental group of a complete Riemannian manifold of constant negative curvature

    Fault tolerant architectures for integrated aircraft electronics systems, task 2

    Get PDF
    The architectural basis for an advanced fault tolerant on-board computer to succeed the current generation of fault tolerant computers is examined. The network error tolerant system architecture is studied with particular attention to intercluster configurations and communication protocols, and to refined reliability estimates. The diagnosis of faults, so that appropriate choices for reconfiguration can be made is discussed. The analysis relates particularly to the recognition of transient faults in a system with tasks at many levels of priority. The demand driven data-flow architecture, which appears to have possible application in fault tolerant systems is described and work investigating the feasibility of automatic generation of aircraft flight control programs from abstract specifications is reported
    corecore