116 research outputs found
On Uniquely Closable and Uniquely Typable Skeletons of Lambda Terms
Uniquely closable skeletons of lambda terms are Motzkin-trees that
predetermine the unique closed lambda term that can be obtained by labeling
their leaves with de Bruijn indices. Likewise, uniquely typable skeletons of
closed lambda terms predetermine the unique simply-typed lambda term that can
be obtained by labeling their leaves with de Bruijn indices.
We derive, through a sequence of logic program transformations, efficient
code for their combinatorial generation and study their statistical properties.
As a result, we obtain context-free grammars describing closable and uniquely
closable skeletons of lambda terms, opening the door for their in-depth study
with tools from analytic combinatorics.
Our empirical study of the more difficult case of (uniquely) typable terms
reveals some interesting open problems about their density and asymptotic
behavior.
As a connection between the two classes of terms, we also show that uniquely
typable closed lambda term skeletons of size are in a bijection with
binary trees of size .Comment: Pre-proceedings paper presented at the 27th International Symposium
on Logic-Based Program Synthesis and Transformation (LOPSTR 2017), Namur,
Belgium, 10-12 October 2017 (arXiv:1708.07854
Resource control and intersection types: an intrinsic connection
In this paper we investigate the -calculus, a -calculus
enriched with resource control. Explicit control of resources is enabled by the
presence of erasure and duplication operators, which correspond to thinning and
con-traction rules in the type assignment system. We introduce directly the
class of -terms and we provide a new treatment of substitution by its
decompo-sition into atomic steps. We propose an intersection type assignment
system for -calculus which makes a clear correspondence between three
roles of variables and three kinds of intersection types. Finally, we provide
the characterisation of strong normalisation in -calculus by means of
an in-tersection type assignment system. This process uses typeability of
normal forms, redex subject expansion and reducibility method.Comment: arXiv admin note: substantial text overlap with arXiv:1306.228
Evaluating sealing efficiency of caprocks for CO2 storage: an overview of the Geocarbone Integrity program and results
8 pagesInternational audienceThe objectives of the Geocarbone-Integrity program are to develop techniques, methodologies and knowledge concerning the long term confinement of CO2 in geological storage. Linked to other French programs such as Geocarbone Injectivity or Picoref, it is an integrated approach involving geochemistry, petrophysics, geology and geomechanics. Different scales must be considered in order to describe caprocks: from the pore or grain scale in petrophysics and geochemistry, to regional scale in geology and geomechanics. The program focused on a specific site of the Paris basin but the methodologies developed are general and can be applied elsewhere
One hundred second bit-flip time in a two-photon dissipative oscillator
Current implementations of quantum bits (qubits) continue to undergo too many
errors to be scaled into useful quantum machines. An emerging strategy is to
encode quantum information in the two meta-stable pointer states of an
oscillator exchanging pairs of photons with its environment, a mechanism shown
to provide stability without inducing decoherence. Adding photons in these
states increases their separation, and macroscopic bit-flip times are expected
even for a handful of photons, a range suitable to implement a qubit. However,
previous experimental realizations have saturated in the millisecond range. In
this work, we aim for the maximum bit-flip time we could achieve in a
two-photon dissipative oscillator. To this end, we design a Josephson circuit
in a regime that circumvents all suspected dynamical instabilities, and employ
a minimally invasive fluorescence detection tool, at the cost of a two-photon
exchange rate dominated by single-photon loss. We attain bit-flip times of the
order of 100 seconds for states pinned by two-photon dissipation and containing
about 40 photons. This experiment lays a solid foundation from which the
two-photon exchange rate can be gradually increased, thus gaining access to the
preparation and measurement of quantum superposition states, and pursuing the
route towards a logical qubit with built-in bit-flip protection
Homeomorphic Embedding for Online Termination of Symbolic Methods
Well-quasi orders in general, and homeomorphic embedding in particular, have gained popularity to ensure the termination of techniques for program analysis, specialisation, transformation, and verification. In this paper we survey and discuss this use of homeomorphic embedding and clarify the advantages of such an approach over one using well-founded orders. We also discuss various extensions of the homeomorphic embedding relation. We conclude with a study of homeomorphic embedding in the context of metaprogramming, presenting some new (positive and negative) results and open problems
The coinductive formulation of common knowledge
We study the coinductive formulation of common knowledge in type theory. We formalise both the traditional relational semantics and an operator semantics, similar in form to the epistemic system S5, but at the level of events on possible worlds rather than as a logical derivation system. We have two major new results. Firstly, the operator semantics is equivalent to the relational semantics: we discovered that this requires a new hypothesis of semantic entailment on operators, not known in previous literature. Secondly, the coinductive version of common knowledge is equivalent to the traditional transitive closure on the relational interpretation. All results are formalised in the proof assistants Agda and Coq
Observation of Josephson Harmonics in Tunnel Junctions
Superconducting quantum processors have a long road ahead to reach
fault-tolerant quantum computing. One of the most daunting challenges is taming
the numerous microscopic degrees of freedom ubiquitous in solid-state devices.
State-of-the-art technologies, including the world's largest quantum
processors, employ aluminum oxide (AlO) tunnel Josephson junctions (JJs) as
sources of nonlinearity, assuming an idealized pure current-phase
relation (CR). However, this celebrated CR is
only expected to occur in the limit of vanishingly low-transparency channels in
the AlO barrier. Here we show that the standard CR fails to
accurately describe the energy spectra of transmon artificial atoms across
various samples and laboratories. Instead, a mesoscopic model of tunneling
through an inhomogeneous AlO barrier predicts %-level contributions from
higher Josephson harmonics. By including these in the transmon Hamiltonian, we
obtain orders of magnitude better agreement between the computed and measured
energy spectra. The reality of Josephson harmonics transforms qubit design and
prompts a reevaluation of models for quantum gates and readout, parametric
amplification and mixing, Floquet qubits, protected Josephson qubits, etc. As
an example, we show that engineered Josephson harmonics can reduce the charge
dispersion and the associated errors in transmon qubits by an order of
magnitude, while preserving anharmonicity
- …