461 research outputs found

    Impurity-to-efficiency simulator: Predictive simulation of solar cell efficiencies based on measured metal distribution and cell processing conditions

    Get PDF
    We present a fast and simple 1D simulation tool to predict solar cell performance as a function of the initial iron content and distribution in the as-grown silicon wafer, the time-temperature profiles applied during the fabrication process, and several parameters related to cell architecture. The applied model consists of three parts that are validated by comparison to experimental results from literature. Assuming a time-temperature profile of a standard solar cell fabrication process, we calculate the redistribution of iron and the evolution of minority carrier lifetime for different as-grown Fe distributions. The solar cell performance as a function of the total iron concentration and the final lifetime distribution is also simulated and compared to experimental results for multicrystalline Si. Keywords: simulation, crystalline silicon solar cell, getterin

    Caspase-generated fragment of the Met receptor favors apoptosis via the intrinsic pathway independently of its tyrosine kinase activity

    Get PDF
    The receptor tyrosine kinase Met and its ligand, the hepatocyte growth factor, are essential to embryonic development, whereas the deregulation of Met signaling is associated with tumorigenesis. While ligand-activated Met promotes survival, caspase-dependent generation of the p40 Met fragment leads to apoptosis induction – hallmark of the dependence receptor. Although the survival signaling pathways induced by Met are well described, the pro-apoptotic signaling pathways are unknown. We show that, although p40 Met contains the entire kinase domain, it accelerates apoptosis independently of kinase activity. In cell cultures undergoing apoptosis, the fragment shows a mitochondrial localization, required for p40 Met-induced cell death. Fulminant hepatic failure induced in mice leads to the generation of p40 Met localized also in the mitochondria, demonstrating caspase cleavage of Met in vivo. According to its localization, the fragment induces mitochondrial permeabilization, which is inhibited by Bak silencing and Bcl-xL overexpression. Moreover, Met silencing delays mitochondrial permeabilization induced by an apoptotic treatment. Thus, the Met-dependence receptor in addition to its well-known role in survival signaling mediated by its kinase activity, also participates in the intrinsic apoptosis pathway through the generation of p40 Met – a caspase-dependent fragment of Met implicated in the mitochondrial permeabilization process

    A Chiral Paramagnetic Skyrmion-like Phase in MnSi

    Full text link
    We present a comprehensive study of chiral fluctuations in the reference helimagnet MnSi by polarized neutron scattering and Neutron Spin Echo spectroscopy, which reveals the existence of a completely left-handed and dynamically disordered phase. This phase may be identified as a spontaneous skyrmion phase: it appears in a limited temperature range just above the helical transition Tc and coexists with the helical phase at Tc.Comment: PRL accepte

    TCAD for PV: a fast method for accurately modelling metal impurity evolution during solar cell processing

    Full text link
    Coupled device and process silumation tools, collectively known as technology computer-aided design (TCAD), have been used in the integrated circuit industry for over 30 years. These tools allow researchers to quickly converge on optimized devide designs and manufacturing processes with minimal experimental expenditures. The PV industry has been slower to adopt these tools, but is quickly developing competency in using them. This paper introduces a predictive defect engineering paradigm and simulation tool, while demonstrating its effectiveness at increasing the performance and throughput of current industrial processes. the impurity-to-efficiency (I2E) simulator is a coupled process and device simulation tool that links wafer material purity, processing parameters and cell desigh to device performance. The tool has been validated with experimental data and used successfully with partners in industry. The simulator has also been deployed in a free web-accessible applet, which is available for use by the industrial and academic communities

    Exposure in utero to maternal diabetes leads to glucose intolerance and high blood pressure with no major effects on lipid metabolism

    Get PDF
    AIM: Recent evidence shows that adult metabolic disease may originate from an adverse fetal environment that can alter organ development and function in postnatal life. This study aimed to analyze the effect of exposure in utero to maternal diabetes on the development of the metabolic syndrome in the offspring. METHODS: Pregnant rats were made diabetic (blood glucose was 20mM) with a single streptozotocin injection on day 0 of gestation. Offspring from diabetic mothers (DMO) and control mothers (CMO) were followed from birth to 12 months of age. In these animals, metabolic parameters, such as glucose tolerance, insulin sensitivity and plasma lipid levels, as well as pancreatic insulin and morphology were studied. RESULTS: Compared with controls, DMO offspring had normal birth weights, but impaired postnatal growth that persisted throughout life. Metabolic tests revealed that DMO offspring also showed impaired glucose tolerance at six months associated with decreased insulin sensitivity and low insulin secretion. In older animals (12 months old), this phenotype persisted, but to a lesser extent. The DMO offspring also presented with high blood pressure and decreased levels of fasting plasma triglycerides, but normal plasma NEFA, and HDL and total cholesterol. CONCLUSION: Altogether, these results show that our model of exposure in utero to maternal diabetes led to normal birth weights, and induced transient glucose intolerance and increased blood pressure with no major effects on lipid metabolism. It also suggests that a hyperglycaemic fetal environment may be able to \u27programme\u27 hypertension and glucose intolerance, but not alter lipid metabolism

    Nanoengineered Astronomical Optics

    Full text link
    We describe a technology for the fabrication of inexpensive and versatile mirrors through the use of a new type of nanoengineered optical material composed by the spreading of a self-assembling reflective colloidal film spread at the surface of a liquid. These new reflecting liquids offer interesting possibilities for astronomical instrumentation. For example, they can replace mercury in conventional rotating liquid mirrors. The main advantages offered include extremely low cost and, by coating a viscous liquid, the possibility of tilting the mirror by a few tens of degrees. We also have coated ferromagnetic liquids with these reflecting films. The resulting surfaces can be shaped by the application of a magnetic field, yielding reflecting surfaces that can have complicated shapes that can rapidly shift with time. These inexpensive and versatile optical elements could have numerous scientific and technological applications. Among possible astronomical applications, they could be used to make large inexpensive adaptive mirrors exhibiting strokes ranging from nanometers to several millimeters.Comment: Submitted to Astrophysical Journal Letters. 18 pages, 4 figure

    Skyrmions and spirals in MnSi under hydrostatic pressure

    Get PDF
    The archetype cubic chiral magnet MnSi is home to some of the most fascinating states in condensed matter such as skyrmions and a non-Fermi liquid behavior in conjunction with a topological Hall effect under hydrostatic pressure. Using small angle neutron scattering, we study the evolution of the helimagnetic, conical and skyrmionic correlations with increasing hydrostatic pressure. We show that the helical propagation vector smoothly reorients from 111\langle 111 \rangle to 100\langle100\rangle at intermediate pressures. At higher pressures, above the critical pressure, the long-range helimagnetic order disappears at zero magnetic field. Nevertheless, skyrmion lattices and conical spirals form under magnetic fields, in a part of the phase diagram where a topological Hall effect and a non-Fermi liquid behavior have been reported. These unexpected results shed light on the puzzling behavior of MnSi at high pressures and the mechanisms that destabilize the helimagnetic long-range order at the critical pressure

    Exposure to Maternal Diabetes Induces Salt-Sensitive Hypertension and Impairs Renal Function in Adult Rat Offspring

    Get PDF
    OBJECTIVE—Epidemiological and experimental studies have led to the hypothesis of fetal origin of adult diseases, suggesting that some adult diseases might be determined before birth by altered fetal development. We have previously demonstrated in the rat that in utero exposure to maternal diabetes impairs renal development leading to a reduction in nephron number. Little is known on the long-term consequences of in utero exposure to maternal diabetes. The aim of the study was to assess, in the rat, long-term effects of in utero exposure to maternal diabetes on blood pressure and renal function in adulthood

    Role of Sox-9, ER81 and VE-Cadherin in Retinoic Acid-Mediated Trans-Differentiation of Breast Cancer Cells

    Get PDF
    Many aspects of development, tumor growth and metastasis depend upon the provision of an adequate vasculature. This can be a result of regulated angiogenesis, recruitment of circulating endothelial progenitors and/or vascular trans-differentiation. The present study demonstrates that treatment of SKBR-3 breast cancer cells with retinoic acid (RA), an important regulator of embryogenesis, cancer and other diseases, stimulates the formation of networks in Matrigel. RA-treatment of SKBR-3 cells co-cultured with human umbilical vein endothelial cells resulted in the formation of mixed structures. RA induces expression of many endothelial genes including vascular endothelial (VE) cadherin. VE-cadherin was also induced by RA in a number of other breast cancer cells. We show that RA-induced VE-cadherin is responsible for the RA-induced morphological changes. RA rapidly induced the expression of Sox-9 and ER81, which in turn form a complex on the VE-cadherin promoter and are required to mediate the transcriptional regulation of VE-cadherin by RA. These data indicate that RA may promote the expression of endothelial genes resulting in endothelial-like differentiation, or provide a mechanism whereby circulating endothelial progenitor cells could be incorporated into a growing organ or tumor
    corecore