47 research outputs found

    MLVA-16 typing of 295 marine mammal <i>Brucella</i> isolates from different animal and geographic origins identifies 7 major groups within <i>Brucella ceti</i> and <i>Brucella pinnipedialis</i>

    Get PDF
    BackgroundSince 1994, Brucella strains have been isolated from a wide range of marine mammals. They are currently recognized as two new Brucella species, B. pinnipedialis for the pinniped isolates and B. ceti for the cetacean isolates in agreement with host preference and specific phenotypic and molecular markers. In order to investigate the genetic relationships within the marine mammal Brucella isolates and with reference to terrestrial mammal Brucella isolates, we applied in this study the Multiple Loci VNTR (Variable Number of Tandem Repeats) Analysis (MLVA) approach. A previously published assay comprising 16 loci (MLVA-16) that has been shown to be highly relevant and efficient for typing and clustering Brucella strains from animal and human origin was used.Results294 marine mammal Brucella strains collected in European waters from 173 animals and a human isolate from New Zealand presumably from marine origin were investigated by MLVA-16. Marine mammal Brucella isolates were shown to be different from the recognized terrestrial mammal Brucella species and biovars and corresponded to 3 major related groups, one specific of the B. ceti strains, one of the B. pinnipedialis strains and the last composed of the human isolate. In the B. ceti group, 3 subclusters were identified, distinguishing a cluster of dolphin, minke whale and porpoise isolates and two clusters mostly composed of dolphin isolates. These results were in accordance with published analyses using other phenotypic or molecular approaches, or different panels of VNTR loci. The B. pinnipedialis group could be similarly subdivided in 3 subclusters, one composed exclusively of isolates from hooded seals (Cystophora cristata) and the two others comprising other seal species isolates.ConclusionThe clustering analysis of a large collection of marine mammal Brucella isolates from European waters significantly strengthens the current view of the population structure of these two species, and their relative position with respect to the rest of the Brucella genus. MLVA-16 is confirmed as being a rapid, highly discriminatory and reproducible method to classify Brucella strains including the marine mammal isolates. The Brucella2009 MLVA-16 genotyping database available at http://mlva.u-psud.fr is providing a detailed coverage of all 9 currently recognized Brucella species

    A first assessment of the genetic diversity of Mycobacterium tuberculosis complex in Cambodia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cambodia is among the 22 high-burden TB countries, and has one of the highest rates of TB in South-East Asia. This study aimed to describe the genetic diversity among clinical <it>Mycobacterium tuberculosis </it>complex (MTC) isolates collected in Cambodia and to relate these findings to genetic diversity data from neighboring countries.</p> <p>Methods</p> <p>We characterized by 24 VNTR loci genotyping and spoligotyping 105 <it>Mycobacterium tuberculosis </it>clinical isolates collected between 2007 and 2008 in the region of Phnom-Penh, Cambodia, enriched in multidrug-resistant (MDR) isolates (n = 33).</p> <p>Results</p> <p>Classical spoligotyping confirmed that the East-African Indian (EAI) lineage is highly prevalent in this area (60%-68% respectively in whole sample and among non-MDR isolates). Beijing lineage is also largely represented (30% in whole sample, 21% among non-MDR isolates, OR = 4.51, CI<sub>95% </sub>[1.77, 11.51]) whereas CAS lineage was absent. The 24 loci MIRU-VNTR typing scheme distinguished 90 patterns with only 13 multi-isolates clusters covering 28 isolates. The clustering of EAI strains could be achieved with only 8 VNTR combined with spoligotyping, which could serve as a performing, easy and cheap genotyping standard for this family. Extended spoligotyping suggested relatedness of some unclassified "T1 ancestors" or "Manu" isolates with modern strains and provided finer resolution.</p> <p>Conclusions</p> <p>The genetic diversity of MTC in Cambodia is driven by the EAI and the Beijing families. We validate the usefulness of the extended spoligotyping format in combination with 8 VNTR for EAI isolates in this region.</p

    Multiple-Locus Variable-Number Tandem-Repeat Analysis of Pathogenic Yersinia enterocolitica in China

    Get PDF
    The predominant bioserotypes of pathogenic Yersinia enterocolitica in China are 2/O: 9 and 3/O: 3; no pathogenic O: 8 strains have been found to date. Multiple-Locus Variable-Number Tandem-Repeat Analysis (MLVA) based on seven loci was able to distinguish 104 genotypes among 218 pathogenic Y. enterocolitica isolates in China and from abroad, showing a high resolution. The major pathogenic serogroups in China, O: 3 and O: 9, were divided into two clusters based on MLVA genotyping. The different distribution of Y. enterocolitica MLVA genotypes maybe due to the recent dissemination of specific clones of 2/O: 9 and 3/O: 3 strains in China. MLVA was a helpful tool for bacterial pathogen surveillance and investigation of pathogenic Y. enterocolitica outbreaks

    Molecular typing of mycobacterium tuberculosis isolates circulating in Jiangsu Province, China

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Globally, China is the second place with high burden of tuberculosis (TB). To explore the characteristics of the pathogens of <it>Mycobacterium tuberculosis </it>(MTB) circulating in this area is helpful for understanding and controlling the spread of the strains. Recent developments in molecular biology have allowed prompt identification and tracking specific strains of MTB spreading through the population.</p> <p>Methods</p> <p>Spacer-oligonucleotide typing (spoligotyping) and mycobacterial interspersed repetitive units variable number tandem repeat (MIRU-VNTR) were performed in combination to yield specific genetic profiles of 260 MTB strains isolated from 30 counties of Jiangsu province in China between June and July 2010. The spoligotyping results were in comparison to the world Spoligotyping Database of Institute Pasteur de Guadeloupe (SpolDB4). Drug susceptibility test (DST) was performed on all strains by proportion method on Lowenstein-Jensen (LJ) culture media.</p> <p>Results</p> <p>Based on the spoligotyping method, 246 strains displayed known patterns and 14 were absent in the database. Predominant spoligotypes belonged to the Beijing family (80.4%). By using the 24-loci VNTR typing scheme, 224 different patterns were identified, including 20 clusters and 204 unique patterns. The largest clade comprised 195 strains belonging to the Beijing family. The combination of spoligotyping and 24-loci MIRU-VNTR demonstrated maximal discriminatory power. Furthermore, we observed a significant association between Beijing family strains and drug-resistant phenotypes. The Beijing family strains presented increased risks for developing multi-drug resistant TB, with the OR (95% CI) of 11.07(1.45-84.50).</p> <p>Conclusions</p> <p>The present study demonstrated that Beijing family isolates were the most prevalent strains circulating in Jiangsu province of China. The utility of spoligotyping in combination with 24-loci MIRU-VNTR might be a useful tool for epidemiological analysis of MTB transmission.</p

    Diversity of Mycobacterium tuberculosis genotypes circulating in Ndola, Zambia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tuberculosis (TB) is one of the major public health problems in Zambia. However, information about lineages of <it>M. tuberculosis </it>complex (MTBC) isolates useful for epidemiology investigations is unknown. In this study, we investigated the diversity of MTBC isolates from Ndola, a typical Zambian urbanized city with a documented high HIV prevalence.</p> <p>Methods</p> <p>This was part of a prospective cohort study in subjects with sputum smear-positive pulmonary TB. Spoligotyping was used to genotype the MTBC isolates and establish the circulating lineages. The 15-locus Mycobacterial Interspersed Repetitive Units - Variable Number Tandem Repeats (MIRU-VNTR) typing was used to study recent transmission.</p> <p>Results</p> <p>A total of 98 different spoligotypes were identified among 273 MTBC isolates. The majority (64.8%) of the isolates belonged to 9 known families, while 96 (35.2%) of the isolates were orphans. While LAM (41.8%) was the largest spoligotype family observed, most of the isolates (87.7%) belonging to the SAF1 family, with a significant portion coming from the T (13.6%), and X (5.9%) families. A few isolates (3.6%) belonged to the CAS, EAI, H, S, X1-LAM9 or U families. MIRU-VNTR typing was highly discriminatory (h = 0.988) among the 156 isolates tested in our sample, and increased the discrimination among 82 SAF1 isolates from 6 to 46 distinct patterns. In addition, 3.2% (5/156) of cases with available MIRU-VNTR results harbored more than one MTBC strain.</p> <p>Conclusions</p> <p>Our findings show a limited diversity of MTBC in Ndola with a high clustering rate (37.7%), which indicates that recent transmission plays an appreciable role in the dynamics of TB disease in this setting. This conclusion emphasizes the importance of early diagnosis and timely treatment. The results also confirm that MIRU-VNTR typing is suitable for studying the molecular epidemiology of TB in Ndola.</p

    Comparative Genomics of 2009 Seasonal Plague (Yersinia pestis) in New Mexico

    Get PDF
    Plague disease caused by the Gram-negative bacterium Yersinia pestis routinely affects animals and occasionally humans, in the western United States. The strains native to the North American continent are thought to be derived from a single introduction in the late 19th century. The degree to which these isolates have diverged genetically since their introduction is not clear, and new genomic markers to assay the diversity of North American plague are highly desired. To assay genetic diversity of plague isolates within confined geographic areas, draft genome sequences were generated by 454 pyrosequencing from nine environmental and clinical plague isolates. In silico assemblies of Variable Number Tandem Repeat (VNTR) loci were compared to laboratory-generated profiles for seven markers. High-confidence SNPs and small Insertion/Deletions (Indels) were compared to previously sequenced Y. pestis isolates. The resulting panel of mutations allowed clustering of the strains and tracing of the most likely evolutionary trajectory of the plague strains. The sequences also allowed the identification of new putative SNPs that differentiate the 2009 isolates from previously sequenced plague strains and from each other. In addition, new insertion points for the abundant insertion sequences (IS) of Y. pestis are present that allow additional discrimination of strains; several of these new insertions potentially inactivate genes implicated in virulence. These sequences enable whole-genome phylogenetic analysis and allow the unbiased comparison of closely related isolates of a genetically monomorphic pathogen

    Genomes of the Most Dangerous Epidemic Bacteria Have a Virulence Repertoire Characterized by Fewer Genes but More Toxin-Antitoxin Modules

    Get PDF
    We conducted a comparative genomic study based on a neutral approach to identify genome specificities associated with the virulence capacity of pathogenic bacteria. We also determined whether virulence is dictated by rules, or if it is the result of individual evolutionary histories. We systematically compared the genomes of the 12 most dangerous pandemic bacteria for humans ("bad bugs") to their closest non-epidemic related species ("controls").We found several significantly different features in the "bad bugs", one of which was a smaller genome that likely resulted from a degraded recombination and repair system. The 10 Cluster of Orthologous Group (COG) functional categories revealed a significantly smaller number of genes in the "bad bugs", which lacked mostly transcription, signal transduction mechanisms, cell motility, energy production and conversion, and metabolic and regulatory functions. A few genes were identified as virulence factors, including secretion system proteins. Five "bad bugs" showed a greater number of poly (A) tails compared to the controls, whereas an elevated number of poly (A) tails was found to be strongly correlated to a low GC% content. The "bad bugs" had fewer tandem repeat sequences compared to controls. Moreover, the results obtained from a principal component analysis (PCA) showed that the "bad bugs" had surprisingly more toxin-antitoxin modules than did the controls.We conclude that pathogenic capacity is not the result of "virulence factors" but is the outcome of a virulent gene repertoire resulting from reduced genome repertoires. Toxin-antitoxin systems could participate in the virulence repertoire, but they may have developed independently of selfish evolution

    The Secret Life of the Anthrax Agent Bacillus anthracis: Bacteriophage-Mediated Ecological Adaptations

    Get PDF
    Ecological and genetic factors that govern the occurrence and persistence of anthrax reservoirs in the environment are obscure. A central tenet, based on limited and often conflicting studies, has long held that growing or vegetative forms of Bacillus anthracis survive poorly outside the mammalian host and must sporulate to survive in the environment. Here, we present evidence of a more dynamic lifecycle, whereby interactions with bacterial viruses, or bacteriophages, elicit phenotypic alterations in B. anthracis and the emergence of infected derivatives, or lysogens, with dramatically altered survival capabilities. Using both laboratory and environmental B. anthracis strains, we show that lysogeny can block or promote sporulation depending on the phage, induce exopolysaccharide expression and biofilm formation, and enable the long-term colonization of both an artificial soil environment and the intestinal tract of the invertebrate redworm, Eisenia fetida. All of the B. anthracis lysogens existed in a pseudolysogenic-like state in both the soil and worm gut, shedding phages that could in turn infect non-lysogenic B. anthracis recipients and confer survival phenotypes in those environments. Finally, the mechanism behind several phenotypic changes was found to require phage-encoded bacterial sigma factors and the expression of at least one host-encoded protein predicted to be involved in the colonization of invertebrate intestines. The results here demonstrate that during its environmental phase, bacteriophages provide B. anthracis with alternatives to sporulation that involve the activation of soil-survival and endosymbiotic capabilities

    Brucellosis as an Emerging Threat in Developing Economies:Lessons from Nigeria

    Get PDF
    Nigeria is the most populous country in Africa, has a large proportion of the world's poor livestock keepers, and is a hotspot for neglected zoonoses. A review of the 127 accessible publications on brucellosis in Nigeria reveals only scant and fragmented evidence on its spatial and temporal distribution in different epidemiological contexts. The few bacteriological studies conducted demonstrate the existence of Brucella abortus in cattle and sheep, but evidence for B. melitensis in small ruminants is dated and unclear. The bulk of the evidence consists of seroprevalence studies, but test standardization and validation are not always adequately described, and misinterpretations exist with regard to sensitivity and/or specificity and ability to identify the infecting Brucella species. Despite this, early studies suggest that although brucellosis was endemic in extensive nomadic systems, seroprevalence was low, and brucellosis was not perceived as a real burden; recent studies, however, may reflect a changing trend. Concerning human brucellosis, no studies have identified the Brucella species and most reports provide only serological evidence of contact with Brucella in the classical risk groups; some suggest brucellosis misdiagnoses as malaria or other febrile conditions. The investigation of a severe outbreak that occurred in the late 1970s describes the emergence of animal and human disease caused by the settling of previously nomadic populations during the Sahelian drought. There appears to be an increasing risk of re-emergence of brucellosis in sub-Saharan Africa, as a result of the co-existence of pastoralist movements and the increase of intensive management resulting from growing urbanization and food demand. Highly contagious zoonoses like brucellosis pose a threat with far-reaching social and political consequences
    corecore