4,433 research outputs found

    Quasilinear approach of the cumulative whistler instability in fast solar winds: Constraints of electron temperature anisotropy

    Full text link
    Context. Solar outflows are a considerable source of free energy which accumulates in multiple forms like beaming (or drifting) components and/or temperature anisotropies. However, kinetic anisotropies of plasma particles do not grow indefinitely and particle-particle collisions are not efficient enough to explain the observed limits of these anisotropies. Instead, the self-generated wave instabilities can efficiently act to constrain kinetic anisotropies, but the existing approaches are simplified and do not provide satisfactory explanations. Thus, small deviations from isotropy shown by the electron temperature (TT) in fast solar winds are not explained yet. Aims. This paper provides an advanced quasilinear description of the whistler instability driven by the anisotropic electrons in conditions typical for the fast solar winds. The enhanced whistler-like fluctuations may constrain the upper limits of temperature anisotropy AT/T>1A \equiv T_\perp /T_\parallel > 1, where ,\perp, \parallel are defined with respect to the magnetic field direction. Methods. Studied are the self-generated whistler instabilities, cumulatively driven by the temperature anisotropy and the relative (counter)drift of the electron populations, e.g., core and halo electrons. Recent studies have shown that quasi-stable states are not bounded by the linear instability thresholds but an extended quasilinear approach is necessary to describe them in this case. Results. Marginal conditions of stability are obtained from a quasilinear theory of the cumulative whistler instability, and approach the quasi-stable states of electron populations reported by the observations.The instability saturation is determined by the relaxation of both the temperature anisotropy and the relative drift of electron populations.Comment: Accepted for publication in A&

    Cumulative effect of Weibel-type instabilities in counterstreaming plasmas with non-Maxwellian anisotropies

    Full text link
    Counterstreaming plasma structures are widely present in laboratory experiments and astrophysical systems, and they are investigated either to prevent unstable modes arising in beam-plasma experiments or to prove the existence of large scale magnetic fields in astrophysical objects. Filamentation instability arises in a counterstreaming plasma and is responsible for the magnetization of the plasma. Filamentationally unstable mode is described by assuming that each of the counterstreaming plasmas has an isotropic Lorentzian (kappa) distribution. In this case, the filamentation instability growth rate can reach a maximum value markedly larger than that for a a plasma with a Maxwellian distribution function. This behaviour is opposite to what was observed for the Weibel instability growth rate in a bi-kappa plasma, which is always smaller than that obtained for a bi-Maxwellian plasma. The approach is further generalized for a counterstreaming plasma with a bi-kappa temperature anisotropy. In this case, the filamentation instability growth rate is enhanced by the Weibel effect when the plasma is hotter in the streaming direction, and the growth rate becomes even larger. These effects improve significantly the efficiency of the magnetic field generation, and provide further support for the potential role of the Weibel-type instabilities in the fast magnetization scenarios

    Cartan's spiral staircase in physics and, in particular, in the gauge theory of dislocations

    Full text link
    In 1922, Cartan introduced in differential geometry, besides the Riemannian curvature, the new concept of torsion. He visualized a homogeneous and isotropic distribution of torsion in three dimensions (3d) by the "helical staircase", which he constructed by starting from a 3d Euclidean space and by defining a new connection via helical motions. We describe this geometric procedure in detail and define the corresponding connection and the torsion. The interdisciplinary nature of this subject is already evident from Cartan's discussion, since he argued - but never proved - that the helical staircase should correspond to a continuum with constant pressure and constant internal torque. We discuss where in physics the helical staircase is realized: (i) In the continuum mechanics of Cosserat media, (ii) in (fairly speculative) 3d theories of gravity, namely a) in 3d Einstein-Cartan gravity - this is Cartan's case of constant pressure and constant intrinsic torque - and b) in 3d Poincare gauge theory with the Mielke-Baekler Lagrangian, and, eventually, (iii) in the gauge field theory of dislocations of Lazar et al., as we prove for the first time by arranging a suitable distribution of screw dislocations. Our main emphasis is on the discussion of dislocation field theory.Comment: 31 pages, 8 figure

    An investigation into the dialectic of Academic Teaching Identity: Some preliminary findings [Presentation]

    Get PDF
    Presented at the International Annual Research Conference, 07-09 Dec 2016, Celtic Manor, Newport in South Wales, United Kingdom

    Kontrolirano izgaranje vodika i kisika u plamenu pri visokom tlaku

    Get PDF
    In this article the results of experiments of technology of controlled combustion of hydrogen-oxygen flame are presented during the special conditions in high-pressure chamber. The measurement of achieved pressures and temperatures at the controlled process of combustion of hydrogen and oxygen flame was realised as temperature measurement in calibration zone, temperature measurement at the front face of the head, temperature measurement in the pressure chamber and pressure measurement in the pressure chamber.U ovom članku prikazani su rezultati eksperimenata tehnološki kontroliranog izgaranja mješavine vodika i kisika u plamenu tijekom posebnih uvjeta u visokotlačnoj komori. Mjerenja ostvarenih tlakova i temperatura pri kontroliranom procesu izgaranja vodika i kisika u plamenu realizirana su kao mjerenje temperature u zoni kalibracije, mjerenje temperature na prednjoj strani glave, mjerenje temperature u tlačnoj komori i mjerenje tlaka u tlačnoj komori
    corecore