Counterstreaming plasma structures are widely present in laboratory
experiments and astrophysical systems, and they are investigated either to
prevent unstable modes arising in beam-plasma experiments or to prove the
existence of large scale magnetic fields in astrophysical objects.
Filamentation instability arises in a counterstreaming plasma and is
responsible for the magnetization of the plasma. Filamentationally unstable
mode is described by assuming that each of the counterstreaming plasmas has an
isotropic Lorentzian (kappa) distribution. In this case, the filamentation
instability growth rate can reach a maximum value markedly larger than that for
a a plasma with a Maxwellian distribution function. This behaviour is opposite
to what was observed for the Weibel instability growth rate in a bi-kappa
plasma, which is always smaller than that obtained for a bi-Maxwellian plasma.
The approach is further generalized for a counterstreaming plasma with a
bi-kappa temperature anisotropy. In this case, the filamentation instability
growth rate is enhanced by the Weibel effect when the plasma is hotter in the
streaming direction, and the growth rate becomes even larger. These effects
improve significantly the efficiency of the magnetic field generation, and
provide further support for the potential role of the Weibel-type instabilities
in the fast magnetization scenarios