195 research outputs found

    Inhibition of Fungi and Gram-Negative Bacteria by Bacteriocin BacTN635 Produced by Lactobacillus plantarum sp. TN635

    Get PDF
    The aim of this study was to evaluate 54 lactic acid bacteria (LAB) strains isolated from meat, fermented vegetables and dairy products for their capacity to produce antimicrobial activities against several bacteria and fungi. The strain designed TN635 has been selected for advanced studies. The supernatant culture of this strain inhibits the growth of all tested pathogenic including the four Gram-negative bacteria (Salmonella enterica ATCC43972, Pseudomonas aeruginosa ATCC 49189, Hafnia sp. and Serratia sp.) and the pathogenic fungus Candida tropicalis R2 CIP203. Based on the nucleotide sequence of the 16S rRNA gene of the strain TN635 (1,540 pb accession no FN252881) and the phylogenetic analysis, we propose the assignment of our new isolate bacterium as Lactobacillus plantarum sp. TN635 strain. Its antimicrobial compound was determined as a proteinaceous substance, stable to heat and to treatment with surfactants and organic solvents. Highest antimicrobial activity was found between pH 3 and 11 with an optimum at pH = 7. The BacTN635 was purified to homogeneity by a four-step protocol involving ammonium sulfate precipitation, centrifugal microconcentrators with a 10-kDa membrane cutoff, gel filtration Sephadex G-25, and C18 reverse-phase HPLC. SDS-PAGE analysis of the purified BacTN635, revealed a single band with an estimated molecular mass of approximately 4 kDa. The maximum bacteriocin production (5,000 AU/ml) was recorded after a 16-h incubation in Man, Rogosa, and Sharpe (MRS) medium at 30 °C. The mode of action of the partial purified BacTN635 was identified as bactericidal against Listeria ivanovii BUG 496 and as fungistatic against C. tropicalis R2 CIP203

    Production and Characterization of Antifungal Compounds Produced by Lactobacillus plantarum IMAU10014

    Get PDF
    Lactobacillus plantarum IMAU10014 was isolated from koumiss that produces a broad spectrum of antifungal compounds, all of which were active against plant pathogenic fungi in an agar plate assay. Two major antifungal compounds were extracted from the cell-free supernatant broth of L. plantarum IMAU10014. 3-phenyllactic acid and Benzeneacetic acid, 2-propenyl ester were carried out by HPLC, LC-MS, GC-MS, NMR analysis. It is the first report that lactic acid bacteria produce antifungal Benzeneacetic acid, 2-propenyl ester. Of these, the antifungal products also have a broad spectrum of antifungal activity, namely against Botrytis cinerea, Glomerella cingulate, Phytophthora drechsleri Tucker, Penicillium citrinum, Penicillium digitatum and Fusarium oxysporum, which was identified by the overlay and well-diffusion assay. F. oxysporum, P. citrinum and P. drechsleri Tucker were the most sensitive among molds

    Active Whey Protein Edible Films and Coatings Incorporating Lactobacillus buchneri for Penicillium nordicum Control in Cheese

    Get PDF
    Fungal contamination of food is responsible for health issues and food waste. In this work, the incorporation of a lactic acid bacteria (LAB) with antifungal properties (Lactobacillus buchneri UTAD104) into whey protein-based films and coatings was tested for the control of an ochratoxigenic fungi (Penicillium nordicum) in a cheese matrix. The incorporation of L. buchneri cells resulted in thicker films with less luminosity than control films and colour alteration. Nevertheless, cells inclusion did not alter moisture content, water vapour permeability, mechanical properties, hydrophobicity and chemical structure of the films. Whey protein films were able to maintain the viability of L. buchneri UTAD104 cells in 105 CFU/mL after 30 days of storage at 25 \textdegreeC. When applied in cheese, films and coatings containing L. buchneri cells prevented fungal contamination for at least 30 days, while control cheeses with films and coatings either without LAB or with Lactobacillus casei UM3 (a strain without antifungal ability) showed fungal contamination during that period. Ochratoxin A was not found in cheeses treated with films and coatings containing L. buchneri UTAD104. Results showed that the inclusion of a LAB with antifungal properties in edible films and coatings can help to reduce or eliminate P. nordicum contamination in cheeses.This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UIDB/04469/2020 unit and BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte. Ana Guimarães received support through grant SFRH/BD/103245/2014 from the Portuguese FCT.info:eu-repo/semantics/publishedVersio

    High-Resolution Melting Analysis as a Powerful Tool to Discriminate and Genotype Pseudomonas savastanoi Pathovars and Strains

    Get PDF
    Pseudomonas savastanoi is a serious pathogen of Olive, Oleander, Ash, and several other Oleaceae. Its epiphytic or endophytic presence in asymptomatic plants is crucial for the spread of Olive and Oleander knot disease, as already ascertained for P. savastanoi pv. savastanoi (Psv) on Olive and for pv. nerii (Psn) on Oleander, while no information is available for pv. fraxini (Psf) on Ash. Nothing is known yet about the distribution on the different host plants and the real host range of these pathovars in nature, although cross-infections were observed following artificial inoculations. A multiplex Real-Time PCR assay was recently developed to simultaneously and quantitatively discriminate in vitro and in planta these P. savastanoi pathovars, for routine culture confirmation and for epidemiological and diagnostical studies. Here an innovative High-Resolution Melting Analysis (HRMA)-based assay was set up to unequivocally discriminate Psv, Psn and Psf, according to several single nucleotide polymorphisms found in their Type Three Secretion System clusters. The genetic distances among 56 P. savastanoi strains belonging to these pathovars were also evaluated, confirming and refining data previously obtained by fAFLP. To our knowledge, this is the first time that HRMA is applied to a bacterial plant pathogen, and one of the few multiplex HRMA-based assays developed so far. This protocol provides a rapid, sensitive, specific tool to differentiate and detect Psv, Psn and Psf strains, also in vivo and against other related bacteria, with lower costs than conventional multiplex Real-Time PCR. Its application is particularly suitable for sanitary certification programs for P. savastanoi, aimed at avoiding the spreading of this phytopathogen through asymptomatic plants

    Preliminary results on the presence of syringomycin-like substances in bean tissues infected by Pseudomonas syringae pv. syringae

    No full text
    "Rendiconti della Accademia Nazionale delle Scienze detta dei XL" serie V, Vol. XV, tomo II, parte II. Abstracts dei lavori presentati al Convegno: Aspetti chimici e fisiologici delle fitotossine, Viterbo, 13-14 Settembre 1990
    • …
    corecore