1,261 research outputs found

    To grate a liquid into tiny droplets by its impact on a hydrophobic micro-grid

    Full text link
    We report on experiments of drop impacting a hydrophobic micro-grid, of typical spacing a few tens of μ\mum. Above a threshold in impact speed, liquid emerges to the other side, forming micro-droplets of size about that of the grid holes. We propose a method to produce either a mono-disperse spray or a single tiny droplet of volume as small as a few picoliters corresponding to a volume division of the liquid drop by a factor of up to 105^5. We also discuss the discrepancy of the measured thresholds with that predicted by a balance between inertia and capillarity.Comment: 3 pages, 5 figures, Accepted for publication in Applied Physics Letter

    Anisotropic Hall Effect in Single Crystal Heavy Fermion YbAgGe

    Full text link
    Temperature- and field-dependent Hall effect measurements are reported for YbAgGe, a heavy fermion compound exhibiting a field-induced quantum phase transition, and for two other closely related members of the RAgGe series: a non-magnetic analogue, LuAgGe and a representative, ''good local moment'', magnetic material, TmAgGe. Whereas the temperature dependent Hall coefficient of YbAgGe shows behavior similar to what has been observed in a number of heavy fermion compounds, the low temperature, field-dependent measurements reveal well defined, sudden changes with applied field; in specific for H⊥cH \perp c a clear local maximum that sharpens as temperature is reduced below 2 K and that approaches a value of 45 kOe - a value that has been proposed as the T=0T = 0 quantum critical point. Similar behavior was observed for H∥cH \| c where a clear minimum in the field-dependent Hall resistivity was observed at low temperatures. Although at our base temperatures it is difficult to distinguish between the field-dependent behavior predicted for (i) diffraction off a critical spin density wave or (ii) breakdown in the composite nature of the heavy electron, for both field directions there is a distinct temperature dependence of a feature that can clearly be associated with a field-induced quantum critical point at T=0T = 0 persisting up to at least 2 K.Comment: revised versio

    First Penning-trap mass measurement in the millisecond half-life range: the exotic halo nucleus 11Li

    Full text link
    In this letter, we report a new mass for 11^{11}Li using the trapping experiment TITAN at TRIUMF's ISAC facility. This is by far the shortest-lived nuclide, t1/2=8.8mst_{1/2} = 8.8 \rm{ms}, for which a mass measurement has ever been performed with a Penning trap. Combined with our mass measurements of 8,9^{8,9}Li we derive a new two-neutron separation energy of 369.15(65) keV: a factor of seven more precise than the best previous value. This new value is a critical ingredient for the determination of the halo charge radius from isotope-shift measurements. We also report results from state-of-the-art atomic-physics calculations using the new mass and extract a new charge radius for 11^{11}Li. This result is a remarkable confluence of nuclear and atomic physics.Comment: Formatted for submission to PR

    First direct mass-measurement of the two-neutron halo nucleus 6He and improved mass for the four-neutron halo 8He

    Full text link
    The first direct mass-measurement of 6^{6}He has been performed with the TITAN Penning trap mass spectrometer at the ISAC facility. In addition, the mass of 8^{8}He was determined with improved precision over our previous measurement. The obtained masses are mm(6^{6}He) = 6.018 885 883(57) u and mm(8^{8}He) = 8.033 934 44(11) u. The 6^{6}He value shows a deviation from the literature of 4σ\sigma. With these new mass values and the previously measured atomic isotope shifts we obtain charge radii of 2.060(8) fm and 1.959(16) fm for 6^{6}He and 8^{8}He respectively. We present a detailed comparison to nuclear theory for 6^6He, including new hyperspherical harmonics results. A correlation plot of the point-proton radius with the two-neutron separation energy demonstrates clearly the importance of three-nucleon forces.Comment: 4 pages, 2 figure

    Phonon anomalies at the valence transition of SmS : An inelasticX-ray scattering study under pressure

    Full text link
    The phonon dispersion curve of SmS under pressure was studied by inelastic x-ray scattering around the pressure-induced valence transition. A significant softening of the longitudinal acoustic modes propagating along the [111] direction was observed spanning a wide qq region from (2Ï€3a,2Ï€3a,2Ï€3a\frac{2\pi}{3a},\frac{2\pi}{3a},\frac{2\pi}{3a}) up to the zone boundary as SmS becomes metallic. The largest softening occurs at the zone boundary and stays stable up to the highest measured pressure of 80 kbar while a gradual hardening of the low qq modes simultaneously appears. This phonon spectrum indicates favorable conditions for the emergence of pressure-induced superconductivity in SmS.Comment: 4 pages, 3 figure

    Insertion sequence content reflects genome plasticity in strains of the root nodule actinobacterium Frankia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genome analysis of three <it>Frankia sp. </it>strains has revealed a high number of transposable elements in two of the strains. Twelve out of the 20 major families of bacterial Insertion Sequence (IS) elements are represented in the 148 annotated transposases of <it>Frankia </it>strain HFPCcI3 (CcI3) comprising 3% of its total coding sequences (CDS). EAN1pec (EAN) has 183 transposase ORFs from 13 IS families comprising 2.2% of its CDS. Strain ACN14a (ACN) differs significantly from the other strains with only 33 transposase ORFs (0.5% of the total CDS) from 9 IS families.</p> <p>Results</p> <p>Insertion sequences in the <it>Frankia </it>genomes were analyzed using BLAST searches, PHYML phylogenies and the IRF (Inverted Repeat Finder) algorithms. To identify putative or decaying IS elements, a PSI-TBLASTN search was performed on all three genomes, identifying 36%, 39% and 12% additional putative transposase ORFs than originally annotated in strains CcI3, EAN and ACN, respectively. The distribution of transposase ORFs in each strain was then analysed using a sliding window, revealing significant clustering of elements in regions of the EAN and CcI3 genomes. Lastly the three genomes were aligned with the MAUVE multiple genome alignment tool, revealing several Large Chromosome Rearrangement (LCR) events; many of which correlate to transposase clusters.</p> <p>Conclusion</p> <p>Analysis of transposase ORFs in <it>Frankia </it>sp. revealed low inter-strain diversity of transposases, suggesting that the majority of transposase proliferation occurred without recent horizontal transfer of novel mobile elements from outside the genus. Exceptions to this include representatives from the IS3 family in strain EAN and seven IS4 transposases in all three strains that have a lower G+C content, suggesting recent horizontal transfer. The clustering of transposase ORFs near LCRs revealed a tendency for IS elements to be associated with regions of chromosome instability in the three strains. The results of this study suggest that IS elements may help drive chromosome differences in different <it>Frankia </it>sp. strains as they have adapted to a variety of hosts and environments.</p
    • …
    corecore