130 research outputs found

    Second Backbend in the Mass A ~ 180 Region

    Full text link
    Within the framework of selfconsistent cranked Hartree-Fock- Bogoliubov theory(one-dimensional) we predict second backbend in the yrast line of Os-182 at I40I \approx 40 , which is even sharper than the first one observed experimentally at I14I \approx 14 . Around such a high spin the structure becomes multi-quasiparticle type, but the main source of this strong discontinuity is a sudden large alignment of i_13/2 proton orbitals along the rotation axis followed soon by the alignment of j_15/2 neutron orbitals. This leads to drastic structural changes at such high spins. When experimentally confirmed, this will be observed for the first time in this mass region, and will be at the highest spin so far.Comment: 13 pages, 4 ps figure

    Shape and blocking effects on odd-even mass differences and rotational motion of nuclei

    Get PDF
    Nuclear shapes and odd-nucleon blockings strongly influence the odd-even differences of nuclear masses. When such effects are taken into account, the determination of the pairing strength is modified resulting in larger pair gaps. The modified pairing strength leads to an improved self-consistent description of moments of inertia and backbending frequencies, with no additional parameters.Comment: 7 pages, 3 figures, subm to PR

    Au-Ag template stripped pattern for scanning probe investigations of DNA arrays produced by Dip Pen Nanolithography

    Full text link
    We report on DNA arrays produced by Dip Pen Nanolithography (DPN) on a novel Au-Ag micro patterned template stripped surface. DNA arrays have been investigated by atomic force microscopy (AFM) and scanning tunnelling microscopy (STM) showing that the patterned template stripped substrate enables easy retrieval of the DPN-functionalized zone with a standard optical microscope permitting a multi-instrument and multi-technique local detection and analysis. Moreover the smooth surface of the Au squares (abput 5-10 angstrom roughness) allows to be sensitive to the hybridization of the oligonucleotide array with label-free target DNA. Our Au-Ag substrates, combining the retrieving capabilities of the patterned surface with the smoothness of the template stripped technique, are candidates for the investigation of DPN nanostructures and for the development of label free detection methods for DNA nanoarrays based on the use of scanning probes.Comment: Langmuir (accepted

    Identification and Localization of Proteins Associated with Biomineralization in the Iron Deposition Vesicles of Honeybees (Apis mellifera)

    Get PDF
    Honeybees (Apis mellifera) form superparamagnetic magnetite to act as a magnetoreceptor for magnetoreception. Biomineralization of superparamagnetic magnetite occurs in the iron deposition vesicles of trophocytes. Even though magnetite has been demonstrated, the mechanism of magnetite biomineralization is unknown. In this study, proteins in the iron granules and iron deposition vesicles of trophocytes were purified and identified by mass spectrometry. Antibodies against such proteins were produced. The major proteins include actin, myosin, ferritin 2, and ATP synthase. Immunolabeling and co-immunoprecipitation studies suggest that iron is stored in ferritin 2 for the purpose of forming 7.5-nm diameter iron particles and that actin-myosin-ferritin 2 may serve as a transporter system. This system, along with calcium and ATP, conveys the iron particles (ferritin) to the center of iron deposition vesicles for iron granules formation. These proteins and reactants are included in iron deposition vesicles during the formation of iron deposition vesicles from the fusion of smooth endoplasmic reticulum. A hypothetical model for magnetite biomineralization in iron deposition vesicles is proposed for honeybees

    Endotoxaemia in Haemodialysis: A Novel Factor in Erythropoetin Resistance?

    Get PDF
    Background/Objectives Translocated endotoxin derived from intestinal bacteria is a driver of systemic inflammation and oxidative stress. Severe endotoxaemia is an underappreciated, but characteristic finding in haemodialysis (HD) patients, and appears to be driven by acute repetitive dialysis induced circulatory stress. Resistance to erythropoietin (EPO) has been identified as a predictor of mortality risk, and associated with inflammation and malnutrition. This study aims to explore the potential link between previously unrecognised endotoxaemia and EPO Resistance Index (ERI) in HD patients. Methodology/Principal Findings 50 established HD patients were studied at a routine dialysis session. Data collection included weight, BMI, ultrafiltration volume, weekly EPO dose, and blood sampling pre and post HD. ERI was calculated as ratio of total weekly EPO dose to body weight (U/kg) to haemoglobin level (g/dL). Mean haemoglobin (Hb) was 11.3±1.3 g/dL with a median EPO dose of 10,000 [IQR 7,500–20,000] u/wk and ERI of 13.7 [IQR 6.9–23.3] ((U/Kg)/(g/dL)). Mean pre-HD serum ET levels were significantly elevated at 0.69±0.30 EU/ml. Natural logarithm (Ln) of ERI correlated to predialysis ET levels (r = 0.324, p = 0.03) with a trend towards association with hsCRP (r = 0.280, p = 0.07). Ln ERI correlated with ultrafiltration volume, a driver of circulatory stress (r = 0.295, p = 0.046), previously identified to be associated with increased intradialytic endotoxin translocation. Both serum ET and ultrafiltration volume corrected for body weight were independently associated with Ln ERI in multivariable analysis. Conclusions This study suggests that endotoxaemia is a significant factor in setting levels of EPO requirement. It raises the possibility that elevated EPO doses may in part merely be identifying patients subjected to significant circulatory stress and suffering the myriad of negative biological consequences arising from sustained systemic exposure to endotoxin

    Pet Project or Best Project? Online Decision Support Tools for Prioritizing Barrier Removals in the Great Lakes and Beyond

    Get PDF
    Structures that block movement of fish through river networks are built to serve a variety of societal needs, including transportation, hydroelectric power, and exclusion of exotic species. Due to their abundance, road crossings and dams reduce the amount of habitat available to fish that migrate from the sea or lakes into rivers to breed. The benefits to fish of removing any particular barrier depends on its location within the river network, its passability to fish, and the relative position of other barriers within the network. Balancing the trade-offs between ecological and societal values makes choosing among potential removal projects difficult. To facilitate prioritization of barrier removals, we developed an online decision support tool (DST) with three functions: (1) view existing barriers at various spatial scales; (2) modify information about barriers, including removal costs; and (3) run optimization models to identify portfolios of removals that provide the greatest amount of habitat access for a given budget. A survey of available DSTs addressing barrier removal prioritization indicates that barrier visualization is becoming widespread but few tools allow dynamic calculation of connectivity metrics, scenario analysis, or optimization. Having these additional functions, our DST enables organizations to develop barrier removal priorities based on cost-effectiveness in restoring aquatic connectivity
    corecore