9,559 research outputs found

    Wolf-Rayets in IC10: Probing the Nearest Starburst

    Get PDF
    IC10 is the nearest starburst galaxy, as revealed both by its Halpha surface brightness and the large number of Wolf-Rayet stars (WRs) per unit area. The relative number of known WC- to WN-type WRs has been thought to be unusually high (~2), unexpected for IC10's metallicity. In this Letter we report the first results of a new and deeper survey for WRs in IC10. We sucessfully detected all of the spectroscopically known WRs, and based upon comparisons with a neighboring control field, estimate that the total number of WRs in IC10 is about 100. We present spectroscopic confirmation of two of our WR candidates, both of which are of WN type. Our photometric survey predicts that the actual WC/WN ratio is ~0.3. This makes the WC/WN ratio of IC 10 consistent with that expected for its metallicity, but greatly increases the already unusually high number of WRs, resulting in a surface density that is about 20 times higher than in the LMC. If the majority of these candidates are spectroscopically confirmed, IC10 must have an exceptional population of high mass stars.Comment: Accepted by ApJL; only minor correction in this versio

    Experimental measurement of photothermal effect in Fabry-Perot cavities

    Get PDF
    We report the experimental observation of the photothermal effect. The measurements are performed by modulating the laser power absorbed by the mirrors of two high-finesse Fabry-Perot cavities. The results are very well described by a recently proposed theoretical model [M. Cerdonio, L. Conti, A. Heidmann and M. Pinard, Phys. Rev. D 63 (2001) 082003], confirming the correctness of such calculations. Our observations and quantitative characterization of the photothermal effect demonstrate its critical importance for high sensitivity interferometric displacement measurements, as those necessary for gravitational wave detection.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let

    The Stellar Content of Obscured Galactic Giant HII Regions. VI: W51A

    Full text link
    We present K-band spectra of newly born OB stars in the obscured Galactic giant H II region W51A and ~ 0.8'' angular resolution images in the J, H and K_S-bands. Four objects have been spectroscopically classified as O-type stars. The mean spectroscopic parallax of the four stars gives a distance of 2.0 \pm 0.3 kpc (error in the mean), significantly smaller than the radio recombination line kinematic value of 5.5 kpc or the values derived from maser propermotion observations (6--8 kpc). The number of Lyman continuum photons from the contribution of all massive stars (NLyc ~ 1.5 x 10^{50} s^{-1}) is in good agreement with that inferred from radio recombination lines (NLyc = 1.3 x 10^{50} s^{-1}) after accounting for the smaller distance derived here. We present analysis of archival high angular resolution images (NAOS CONICA at VLT and T-ReCS at Gemini) of the compact region W51 IRS2. The K_S--band images resolve the infrared source IRS~2 indicating that it is a very young compact HII region. Sources IRS2E was resolved into compact cluster (within 660 AU of projected distance) of 3 objects, but one of them is just bright extended emission. W51d1 and W51d2 were identified with compact clusters of 3 objects (maybe 4 in the case of W51d1) each one. Although IRS~2E is the brightest source in the K-band and at 12.6 \micron, it is not clearly associated with a radio continuum source. Our spectrum of IRS~2E shows, similar to previous work, strong emission in Brγ\gamma and HeI, as well as three forbidden emission lines of FeIII and emission lines of molecular hydrogen (H_2) marking it as a massive young stellar object.Comment: 31 pages and 9 figures, submitted to A

    Selective readout and back-action reduction for wideband acoustic gravitational wave detectors

    Full text link
    We present the concept of selective readout for broadband resonant mass gravitational wave detectors. This detection scheme is capable of specifically selecting the signal from the contributions of the vibrational modes sensitive to the gravitational waves, and efficiently rejecting the contribution from non gravitationally sensitive modes. Moreover this readout, applied to a dual detector, is capable to give an effective reduction of the back-action noise within the frequency band of interest. The overall effect is a significant enhancement in the predicted sensitivity, evaluated at the standard quantum limit for a dual torus detector. A molybdenum detector, 1 m in diameter and equipped with a wide area selective readout, would reach spectral strain sensitivities 2x10^{-23}/sqrt{Hz} between 2-6 kHz.Comment: 9 pages, 4 figure

    A rank-and-compare algorithm to detect abnormally low bids in procurement auctions

    Get PDF
    3noDetecting abnormally low bids in procurement auctions is a recognized problem, since their acceptance could result in the winner not being able to provide the service or work awarded by the auction, which is a significant risk for the auctioneer. A rank-and-compare algorithm is considered to detect such anomalous bids and help auctioneers in achieving an effective rejection decision. Analytical expressions and simulation results are provided for the detection probability, as well as for the false alarm probability. The suggested range of application of the detection algorithm leaves out the cases of many tenderers (more than 20) and quite dispersed bids (coefficient of variation larger than 0.15). An increase in the number of tenderers leads to contrasting effects, since both the false alarm probability and the detection probability are reduced. If the bids are spread over a large range, we have instead a double negative effect, with more false alarms and less detections. The presence of multiple anomalous bids worsens the performance of the algorithm as well. On the other hand, the method is quite robust to the presence of courtesy bids.reservedmixedL. De Giovanni; P. L. Conti; M. NaldiDE GIOVANNI, Livia; P. L., Conti; M., Nald

    Weighted bi-prediction for light field image coding

    Get PDF
    Light field imaging based on a single-tier camera equipped with a microlens array – also known as integral, holoscopic, and plenoptic imaging – has currently risen up as a practical and prospective approach for future visual applications and services. However, successfully deploying actual light field imaging applications and services will require developing adequate coding solutions to efficiently handle the massive amount of data involved in these systems. In this context, self-similarity compensated prediction is a non-local spatial prediction scheme based on block matching that has been shown to achieve high efficiency for light field image coding based on the High Efficiency Video Coding (HEVC) standard. As previously shown by the authors, this is possible by simply averaging two predictor blocks that are jointly estimated from a causal search window in the current frame itself, referred to as self-similarity bi-prediction. However, theoretical analyses for motion compensated bi-prediction have suggested that it is still possible to achieve further rate-distortion performance improvements by adaptively estimating the weighting coefficients of the two predictor blocks. Therefore, this paper presents a comprehensive study of the rate-distortion performance for HEVC-based light field image coding when using different sets of weighting coefficients for self-similarity bi-prediction. Experimental results demonstrate that it is possible to extend the previous theoretical conclusions to light field image coding and show that the proposed adaptive weighting coefficient selection leads to up to 5 % of bit savings compared to the previous self-similarity bi-prediction scheme.info:eu-repo/semantics/acceptedVersio

    Scalable light field coding with support for region of interest enhancement

    Get PDF
    Light field imaging based on microlens arrays - a.k.a. holoscopic, plenoptic, and integral imaging - has currently risen up as a feasible and prospective technology for future image and video applications. However, deploying actual light field applications will require identifying more powerful representation and coding solutions that support emerging manipulation and interaction functionalities. In this context, this paper proposes a novel scalable coding approach that supports a new type of scalability, referred to as Field of View (FOV) scalability, in which enhancement layers can correspond to regions of interest (ROI). The proposed scalable coding approach comprises a base layer compliant with the High Efficiency Video Coding (HEVC) standard, complemented by one or more enhancement layers that progressively allow richer versions of the same light field content in terms of content manipulation and interaction possibilities, for the whole scene or just for a given ROI. Experimental results show the advantages of the proposed scalable coding approach with ROI support to cater for users with different preferences/requirements in terms of interaction functionalities.info:eu-repo/semantics/acceptedVersio

    Efficient unequal probability resampling from finite populations

    Get PDF
    A resampling technique for probability-proportional-to size sampling designs is proposed. It is essentially based on a special form of variable probability, without replacement sampling applied directly to the sample data, yet according to the pseudo-population approach. From a theoretical point of view, it is asymptotically correct: as both the sample size and the population size increase, under mild regularity conditions the proposed resampling design tends to coincide with the original sampling design under which sample data were collected. From a computational point of view, the proposed methodology is easy to be implemented and efficient, because it neither requires the actual construction of the pseudo-population nor any form of randomization to ensure integer weights and sizes. Empirical evidence based on a simulation study1 indicates that the proposed resampling technique outperforms its two main competitors for confidence interval construction of various population parameters including quantiles. (c) 2021 Published by Elsevier B.V

    Harmonic damped oscillators with feedback. A Langevin study

    Full text link
    We consider a system in direct contact with a thermal reservoir and which, if left unperturbed, is well described by a memory-less equilibrium Langevin equation of the second order in the time coordinate. In such conditions, the strength of the noise fluctuations is set by the damping factor, in accordance with the Fluctuation and Dissipation theorem. We study the system when it is subject to a feedback mechanism, by modifying the Langevin equation accordingly. Memory terms now arise in the time evolution, which we study in a non-equilibrium steady state. Two types of feedback schemes are considered, one focusing on time shifts and one on phase shifts, and for both cases we evaluate the power spectrum of the system's fluctuations. Our analysis finds application in feedback cooled oscillators, such as the Gravitational Wave detector AURIGA.Comment: 17 page
    • …
    corecore