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Abstract

In the present paper, a resampling technique for probability-proportional-to size sampling designs is

proposed. It is essentially based on a special form of variable probability, without replacement sampling

applied directly to the sample data, yet according to the pseudo population approach. From a theoretical

point of view, it is “asymptotically correct”: as both the sample size and the population size increase,

under mild regularity conditions the proposed resampling design tends to coincide with the original

sampling design under which sample data were collected. From a computational point of view, the

proposed resampling methodology is easy to implement and efficient, because it neither requires the

actual construction of the pseudo-population nor any form of randomization to ensure integer weights

and sizes. Empirical evidence based on a simulation study indicates that the proposed resampling

technique outperforms its two main competitors for confidence interval construction of various population

parameters including quantiles.
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1. Introduction

The use of resampling methodologies in sampling from finite populations is of considerable interest.

The basic starting point consists in observing that the popular bootstrap technique, originally proposed

by [? ], does not work in sampling from finite populations, because of the dependence among sample

units due to the sampling design. Several techniques have been proposed to overcome this problem; a5

nice, recent review is the paper by [? ]; cfr. also [? ], [? ], [? ].

Among the resampling techniques for sampling designs with pre-fixed first order inclusion probabilities

(πps sampling designs, for short), a special role is played by methodologies based on pseudo-populations;

cfr. [? ] for general aspects, and [? ] for recent theoretical contributions and a simulation study.

A feature which is common to several resampling techniques based on pseudo-populations is their10

computational burden, that could be very large. This motivates the study of resampling methods for

πps sampling designs that:
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- share with methods based on pseudo-populations good properties in terms of variance estimation

and coverage probability of confidence intervals;

- have a moderate computational burden.15

These points are thoroughly discussed in [? ], where the problem of resampling for finite populations is

addressed as a problem of sampling with replacement directly from the sample data (the original sample

henceforth) with different drawing probabilities . Interesting steps along this path were considered in

[? ]. Unfortunately, as it will be seen in the sequel, Quatember’s proposal does not reproduce, neither

exactly nor approximately, at least when the sample size increases with the population size, the first20

order inclusion probabilities of the sampling design under which sample data were collected (the original

sampling design, henceforth). In fact, it is intuitively evident that a resampling design, as the sample

size and the population size become “large”, should be closer and closer to the original sampling design.

From a more formal point of view, as shown in [? ], the key property for the asymptotic correctness of

a resampling design is that its first order inclusion probabilities should asymptotically coincide with the25

first order inclusion probabilities of the original sampling design. In the present paper, a new resampling

technique, essentially based on sampling with replacement from the original sample is proposed. The

basic idea is to use appropriate drawing probabilities in order to reproduce, at least approximately, pre-

fixed first order inclusion probabilities. Its relationships with resampling based on pseudo-populations

will be discussed. The relative merits of the proposed resampling technique will be evaluated through a30

simulation study.

The paper is organized as follows. In Section 2, basics preliminary aspects are exposed. Section

3 deals with a general approach to resampling based on drawing “types” from the observed sample

through a ppswor-based technique. In Section 4 relationships with pseudo-populations are clarified; they

are particularly useful to provide a sound theoretical justification of the proposed resampling technique.35

In Section 5 various approximations to construct drawing probabilities are exploited, and in Section 6

theoretical justifications are provided. The merits of the proposed resampling scheme are evaluated in

Section 7 through a simulation study. Finally, Section 8 is devoted to conclusions.

2. Preliminary aspects and notation

Let UN be a finite population of size N . A sample s is a subset of UN . For each unit i ∈ UN ,40

let Di be a Bernoulli random variable (r.v.), such that i is (is not) in the sample s whenever Di = 1

(Di = 0), so that s = {i ∈ UN : Di = 1}. Denote further by DN the N -dimensional r.v. of components

D1, . . . , DN . A (unordered, without replacement) sampling design P is the probability distribution of

the random vector DN . From now on, the symbols EP , VP , CP will denote expectation, variance and

covariance w.r.t. a sampling design P .45

The expectations πi = EP [Di] and πij = EP [DiDj ] are the first and second order inclusion

probabilities, respectively. The suffix P denotes the sampling design used to select the sample s. The
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sample size is ns = D1 + · · ·+DN .

From now on, the character of interest will be denoted by Y, and yi is its value for unit i of the

population. The population total of character Y is denoted by50

tY =

N∑
i=1

yi,

and the corresponding population mean by

Y N = N−1tY .

The first order inclusion probabilities are frequently chosen to be proportional to an auxiliary variable

X . In symbols: πi ∝ xi, where xi is the value of X for unit i (i = 1, . . . , N). The rationale of this

choice is simple: if the values of the variable of interest are positively correlated with (or, even better,

approximately proportional to) the values of the auxiliary variable, then the Horvitz-Thompson estimator55

of the population mean will be highly efficient.

From now on, the population total of X and the corresponding mean will be denoted by

tX =

N∑
i=1

xi, XN = N−1tX

respectively. With this notation, the first order inclusion probabilities are equal to:

πi = nxi/tX , i = 1, . . . N. (1)

2.1. ppswr Sampling design

Let p1, . . . , pN be N positive numbers, with p1 + · · ·+ pN = 1.60

The probability proportional to size with replacement (ppswr, for short) sampling design of size n,

with drawing probabilities p1, . . . , pN , is a sampling design where n consecutive drawings are performed.

Drawings are independent, and the probability of selecting unit i at each drawing is equal to pi. An

ordered sample composed by units i1, . . . , in (not necessarily distinct) has selection probability:

n∏
j=1

pij .

The first order inclusion probability of unit i is equal to πi = 1 − (1 − pi)n. Hence, in order to have65

pre-fixed inclusion probabilities equal to πis, the drawing probabilities must be equal to

pi = 1− (1− πi)1/n, i = 1, . . . , N. (2)
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2.2. ppswor Sampling design

The probability proportional to size without replacement (ppswor, for short) sampling design of size

n, with initial drawing probabilities p1, . . . , pN is a sampling design where n consecutive drawings are

performed. The probability of selecting unit i in the final sample is proportional to pi, and sampled70

units are not replaced in the population. Hence, an ordered sample composed by units i1, . . . , in has

selection probability:

n∏
j=1

pij
1− pi1 − · · · − pij−1

.

First order inclusion probabilities for ppswor design are not proportional to pis, and do not have an

expression in closed form; see [? ], p. 95, where this design in termed successive sampling. Useful

approximations are given in [? ], [? ], [? ].75

Approximation R-1 (cfr. [? ])

pi ≈ log(1− πi)

/
N∑

k=1

log(1− πk) , i = 1, . . . , N. (3)

Approximation R-2 (cfr. [? ]) Let ξn be the (unique) root of the equation (w.r.t. t):

N∑
i=1

(1− exp {−pit}) = n.

Then, the approximate relationship for inclusion probabilities

πi ≈ 1− exp {−ξnpi} , i = 1, . . . , N (4)

holds. From (4), the following approximate relationship is obtained:

pi ≈ −
1

ξn
log(1− πi), i = 1, . . . , N. (5)

Approximation H (cfr. [? ])80

pi ≈
πi
n

(
1 +

1

2

n− 1

n
(πi − π2)

)

where

π2 =
1

n

N∑
i=1

π2
i . (6)
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3. Resampling for finite populations based on drawings types from the population sample

In the literature, there are several different methods for resampling from finite populations. An

excellent review is in [? ]. A basic principle in finite population resampling is that the first two moments

of a resampled linear statistic should match (at least approximately) the corresponding moments of the85

statistic w.r.t. the sample design. This principle has been first stated in Rao and Wu (1988) dabbed

scaling problem. A detailed discussion and some theoretical justifications will be given in Section 6.

In the resampling process, unit i in the original sample s will be considered as a “unit of type i”.

As mentioned in the Introduction, in the present paper we use a simple principle: resampling a sample

s∗ of size n from the original sample s is essentially equivalent to draw with replacement a sample s∗ of90

size n of types from s.

This principle can be implemented in a conceptually simple way. Let s∗ = (i1, i2, . . . , in) be an

ordered sequence of not-necessarily distinct types in s, and let s∗j = (i1, i2, . . . , ij), j = 1, . . . , n − 1.

Consider next an arbitrary array of n× n positive numbers

p∗j (i ; i1, . . . , ij−1); i ∈ s, j = 1, . . . , n. (7)

such that95

∑
i∈s

p∗j (i ; i1, . . . , ij−1) = 1, j = 1, . . . , n.

The probability in (7) is the probability of selecting type i at drawing j conditionally on having selected

types i1, . . . , ij−1 in the first j − 1 drawings. Then, the probability of selecting s∗ is taken equal to:

p(s∗) = p1(i1)p2(i2 ; ii) · · · pn(in ; ii, . . . , in−1). (8)

The scheme defined by (8) is completely general. To be concrete, in the sequel we will focus on a

special though important case, namely a sequential drawing scheme, similar to ppswor. Let N∗i ≥ 1,

i ∈ s, be the size (non necessarily integer) of type i, and let100

N∗ =
∑
i∈s

N∗i

the total size of all types in sample s. Note that N∗ ≥ n. For each type i ∈ s, define further an initial

drawing probability p∗i , i ∈ s, such that

p∗i > 0 ∀i ∈ s,
∑
i∈s

p∗i = 1. (9)

The ppswor resampling scheme consists in drawing a sample s∗ of n types (not necessarily distinct),
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with drawing probabilities:

pj(Type i|s∗j−1) =
max(0, (N∗i − hi,j−1)p∗i )∑
l∈s max(0, (N∗l − hl,j−1)p∗l )

, j = 1, . . . , n. (10)

where hi,j−1 is the number of times type i appears s∗j−1. From (10) it is seen that the relationships105

0 ≤ hi,j ≤ N∗i ∀i ∈ s,
∑
i∈s

hi,j = j ∀j = 1, . . . , n

hold.

As a special case, a ppswr resampling scheme can be obtained. Assume that N∗i = K∗ for all types

i ∈ s. Then, (10) reduces to

pj(Type i|s∗j−1) =
max(0, (1− hi,j−1/K∗)p∗i )∑
l∈s max(0, (1− hl,j−1/K∗)p∗l )

, j = 1, . . . , n,

and hence, by letting K∗ tend to infinity and taking into account (9),

lim
K∗→∞

pj(Type i|s∗j−1) = p∗i , j = 1, . . . , n

which corresponds to drawing types according to a ppswr scheme with drawing probabilities p∗i s.110

Of course, there are key points to be clarified, namely the choice of the sizes N∗i s and the choice of

the initial drawing probabilities p∗i s, which will be addressed in the subsequent Sections.

4. Relationships with pseudo-populations

The scheme of resampling types, introduced in Section 3, has clear connections with the notion of

pseudo-population; cfr. [? ], [? ], and, for large sample properties, [? ]. A pseudo-population is115

essentially a prediction, based on sample data, of the actual population. Each unit k of the pseudo-

population takes value (x∗k, y
∗
k) equal to one of the (xi, yi) sample pairs. Furthermore, exactly N∗i units

of the pseudo-population take the same values (xi, yi), with i ∈ s; equivalently, unit i of the sample is

replicated N∗i times in the pseudo-population. More formally, a pseudo-population is represented as the

set U∗ = {(xi, yi, N∗i ); i ∈ s}. A unit k of the pseudo-population such that x∗k = xi and y∗k = xi is said120

to be of type i.

If the size N∗i of a type i, as introduced in Section 3, is integer, then it is equivalent to a pseudo-

population where each sample unit i is replicated N∗i times. This remark opens the road to different

criteria for choosing N∗i s. (cfr [? ]).

For πps design a popular choice is the [? ] size.125

Holmberg size
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The Holmberg size is essentially a randomized integer-valued choice based on taking

N∗i =

⌊
1

πi

⌋
+ εi, i ∈ s

where b c denotes the integer part (floor) and εis are independent Bernoulli r.v.s with

P (εi = u|s) = rui (1− ri)1−u, u ∈ {0, 1}, i ∈ s.

with

ri =
1

πi
−
⌊

1

πi

⌋
, i ∈ s.

130

Notice that integer-valued N∗i s are mandatory in order to actually build up the pseudo-population.

According to the principle of resampling “types” illustrated in the previous Section, such a request may

be relaxed by eliminating the additional uncertainty due to the randomization.

Horvitz-Thompson size

The Horvitz-Thompson size is essentially the non-randomized version of the Holmberg size; it is based135

on taking:

N∗i =
1

πi
=

tX
nxi

, i ∈ s.

Note that, in this case, N∗i s are not necessarily integer, which is often the case in practice. Moreover,

the Horvitz-Thompson size has the important property

∑
i∈s

N∗i xi =

N∑
i=1

xi,

namely it is calibrated w.r.t. the total of the auxiliary variable X.

The combination of the ppswor resampling of types proposed in this paper and the HT size allows140

an asymptotically correct resampling based on a pseudo-population without requiring neither its actual

construction, nor the constraint of integer sizes. As a consequence, both computational and precision

advantages can be expected.

5. Drawing probabilities for resampling

The drawing probabilities p∗i s used in resampling should be chosen in order to ensure, at least145

approximately, inclusion probabilities proportional to xis. In this way, the resampling scheme becomes

asymptotically correct. Hence, the target first order inclusion probability of unit k of type i of the pseudo
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population is

π∗k = π∗(i)

= nx∗k/

N∗∑
k=1

x∗k

= nxi/
∑
i∈s

xiN
∗
i

= nxi/t
∗
X . (11)

As a consequence of [? ], [? ], if both the population size N and the sample size n increase, the first order

inclusion probabilities of the corresponding resampling scheme are asymptotically linear in xis, and then150

asymptotically equivalent to the first order inclusion probabilities of the original sampling design. In the

sequel, various approximations for p∗i s, based on those listed in Section 2.2, are examined.

1. Approximation R-1

Using the notation introduced in (3) and based on (11), the relationship

p∗i,R1 ≈ log

(
1− nxi

t∗X

)/∑
l∈s

N∗l log

(
1− nxl

t∗X

)
(12)

holds for all the N∗i pseudo-population units of type i.155

2. Approximation R-2

A second solution, computationally heavier than R− 1, can be based on approximation R-2 (5). The

major difficulty is that the term ξ∗n, which is the (unique) solution of the equation

∑
i∈s

N∗i (1− exp {−p∗i t})

cannot be directly computed on the basis of target first order inclusion probabilities. To this purpose,

the following iterative algorithm can be used.160

0. Set m = 0, π∗(i)(m) = π∗(i), i ∈ s, and take a (small) threshold δ > 0. Go to Step 1.

1. Compute

p∗i (m) = log
(

1− π∗(i)(m)
)/∑

l∈s
N∗l log

(
1− π∗(l)(m)

)
, i ∈ s.

Go to Step 2.

2. Compute ξ∗n(m) as the solution of the equation:

∑
i∈s

N∗i (1− exp {−p∗i (m)t}) = n
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Go to Step 3.165

3. Compute

π∗i (m+ 1) = 1− exp {−ξ∗n(m)p∗i (m)} , i ∈ s (13)

Go to Step 4.

4. Set m→ m+ 1. If |π∗i (m+ 1)−π∗i | < δ for every i ∈ s, then go to Step 5. Otherwise, go to Step 1.

5. Stop. Set

p∗i,R2 = p∗i (m), i ∈ s. (14)

2. Approximation H170

Taking into account (11), it is seen that

π∗2 =
1

n

∑
k

π∗2k

=
1

n

∑
i∈s

N∗i

(
nxi
t∗X

)2

Hence, the drawing probabilities that approximate the target inclusion probabilities (11) are equal to

p∗i,H =
xi
t∗X

{
1 +

1

2

n− 1

n

(
nxi
t∗X
− π∗2

)}
(15)

for all N∗i units of type i, with

∑
i∈s

N∗i p
∗
i,H = 1.

6. Some theoretical justifications

The goal of the present section is to provide a few theoretical justifications to the resampling scheme175

developed so far. As shown in [? ], if the sampling design possesses asymptotically maximal entropy, and

if N∗i s satisfy appropriate regularity conditions (the most important one being that their expectations

are asymptotically equivalent to π−1i s), then the resampling design based on (normalized) Conditional

Poisson design, also known as Maximum Entropy design or rejective sampling, is fully justified from

and asymptotic viewpoint. As a consequence, it is also justified on the basis of Rao’s ”scaling problem”180

already mentioned in Section 3, namely the principle of matching the first two moments of linear statistics.

In the sequel, the first and second order inclusion probabilities for the normalized Conditional Poisson
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design will be denoted by π∗R(i) , π∗R(ij) for all pairs of distinct units in the pseudo poputation U∗, of type i

and type j, respectively, with j 6= i. Of course, π∗R(i) is equal to nxi/t
∗
X for all units of type i.

Resampling design based on ppswor does not possess the same asymptotic justification, although it185

possess good asymptotic properties: cfr. [? ]. Moreover it possess good properties with regard to the

Rao’s principle above, as it will be now illustrated.

Denote by π∗S(i) , π
∗S
(ij) the first and second order inclusion probabilities for units of type i, j 6= i, let

f∗N = n/N∗ be the resampling fraction, and X
∗

= t∗X/N
∗. Note that the target first order inclusion

probabilities (11) are also equal to190

π∗(i) = f∗N
xi
X̄∗

(16)

When approximation R-1 (or R-2) is used:

p∗(i) = log
(

1− π∗R(i)
)
/
∑
i∈s

N∗i log
(

1− π∗R(i)
)

= log

(
1− f∗N

xi

X
∗

)
/
∑
i∈s

N∗i log

(
1− f∗N

xi

X
∗

)
(17)

then the resampling design based on ppswor possesses not only first order inclusion probabilities

proportional to xis, π
∗S
(i) ' nxi/t

∗
X , but also second order inclusion probabilities that are “close” to

π∗R(ij). As a consequence, the proposed resampling based on ppswor it is fully justified on the basis of Rao

principle for the first moment of linear statistics, and “approximately justified” for the second moment195

of linear statistics. This point is clarified in the subsequent Proposition 1.

Define first

∆∗R(ij) = π∗R(ij) − π
∗R
(i) π

∗R
(i) , ∆∗S(ij) = π∗S(ij) − π

∗S
(i)π

∗S
(i) , i 6= j.

As a consequence of (1.9), (1.10) in [? ], and taking into account that, up to a term asymptotically

negligible,

π∗Si = π∗Ri = n
xi
t∗X

(18)

we have200

∆∗Rij ∼
π∗Ri (1− π∗Ri )π∗Rj (1− π∗Rj )∑

i∈sN
∗
i π
∗R
i (1− π∗Ri )

i 6= j ∈ s (19)

and, in view of (18),

∆∗Sij ∼
π∗Si (1− π∗Si )π∗Sj (1− π∗Sj )∑

i∈sN
∗
i π
∗S
i (1− π∗Si )

{
1−

(
1− π∗Sp∗i

p∗π∗Si

)(
1−

π∗Sp∗j
p∗π∗Sj

)}
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= ∆∗Rij

{
1−

(
1− π∗p∗i

p∗π∗Ri

)(
1−

π∗p∗j
p∗π∗Rj

)}
(20)

where ∼ means that the ratio of both sides converges to 1 as both the sample size and the population

size increase, and

π∗ =
∑
i∈s

N∗i π
∗S
i (1− π∗Si ) =

∑
i∈s

N∗i f
∗
N

xi

X
∗

(
1− f∗N

xi

X
∗

)
(21)

p∗ =
∑
i∈s

N∗i p
∗
i (1− π∗Si )

=
∑
i∈s

N∗i

(
1− f∗N

xi

X
∗

)
log

(
1− f∗N

xi

X
∗

)
/
∑
i∈s

N∗i log

(
1− f∗N

xi

X
∗

)
. (22)

Proposition 1. Consider the normalized Conditional Poisson resampling design with π∗(i) = f∗Nxi/X
∗
,

and ppswor resampling design with drawing probabilities p∗i proportional to log
(

1− f∗N
xi

X
∗

)
. Then:205

∆∗Rij −∆∗Sij
∆∗Rij

= O(f∗2N ). (23)

Result (23) is interesting essentially for one reason. The resampling variance of linear statistics

depends of the terms ∆ij = πij−πiπj . If the sampling design possesses high entropy, then the normalized

Conditional Poisson resampling design is asymptotically correct; as a consequence, the resampling

variance of linear statistics is asymptotically equivalent to their sampling variance. Proposition 1 tells us

that, up to a term O
(
f∗2N
)
, the same holds for ppswor resampling design, provided that the corresponding210

first-order inclusion probabilities are (at least asymptotically) equal to f∗Nxi/X
∗
. Since the square of the

resampling fraction, f∗2N , is usually very small, on one hand ppswor resampling design possesses properties

that are “very close” to that of normalized Conditional Poisson resampling design. On the other hand, it

offers a considerable computational advantage. This remark is made stronger by a simple consideration:

under mild regularity conditions, N∗/N tends in probability to 1, and hence the resampling fraction f∗N215

tends to be asymptotically equivalent (in probability) to the sampling fraction fN = n/N .

7. Simulation study

In order to test the empirical performance of the proposed “ppswor resampling of types” procedure,

as illustrated in Section 3, a simulation exercise has been conducted, based on the Horvitz-Thompson size

pseudo-population (see Section 4) and under each of the three alternative options described in Section 5220

to approximate the resampling (drawing) probabilities. Two further bootstrap methods, available in the

literature and applying to πps sampling designs, have been considered in the present simulation study

as main competitors of our proposal, namely:

1) the Quatember’s algorithm [? ] that is comparable both in terms of being based on a pseudo-
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population and, at the same time, being simplified by resampling directly from the (original) sample225

under a ppswor design, as mentioned in Section 1;

2) the Holmberg’s method [? ], that involves a resampling based on a pseudo-population under a

randomized version of the Horvitz-Thompson size (see Section 4). However the Holmberg’s method

requires the actual construction of the pseudo-population and then to resample in it by mimicking

the original sampling design.230

We explored scenarios composed by six populations of increasing size N from 200 to 5000,

with the study variable Y and the auxiliary variable X generated according to the model yi =(
12.5 + 3x1.2i + σεi

)2
+ 4000 where xi ∼ |N(0, 7)|, εi ∼ N(0, 1) and σ = 15, leading to a correlation

coefficient approximately equal to 0.8. Selection probabilities are taken proportional to values zi

generated from Z = Y0.2 · LogN(0, 0.025) where LogN denotes a Lognormal probability distribution.235

These choices match similar simulation works available in recent literature: [? ], [? ]. For each

population, 1000 samples are simulated under a Pareto sampling design. This latter choice has two

prominent reasons: Pareto sampling is practical for being very simple to implement and computationally

not demanding and, at the same time, it holds good properties for being high entropy and heuristically

recognized to be almost equivalent to the asymptotically maximum entropy Rao-Sampford design ([?240

]). Two sampling fractions n/N have been employed, namely 0.04 and 0.20, with the twofold aim of

evaluating small to large finite sample sizes and to enhance the simulation of the Hájek asymptotic setup

(see [? ], Ch. 3).

We investigated the estimation of three population parameters, namely

- Population mean Ȳ = N−1
∑N

i=1 yi;245

- Population median MeY = MeY = inf{y : FN (y) ≥ 0.5};

- Population third quartile Q3Y = inf{y : FN (y) ≥ 0.55}

where FN (y) = N−1
∑N

i=1 I(yi≤y) is the population distribution function, I(yi≤y) being equal to 1

whenever yi ≤ y, and 0 otherwise. As estimators of the above parameters, the Hájek estimators

- ˆ̄Y H =
∑N

i=1Diπ
−1
i yi/

∑N
i=1Diπ

−1
i ;250

- M̂eY = inf{y : F̂H(y) ≥ 0.5};

- Q̂3Y = inf{y : F̂H(y) ≥ 0.75} y ∈ R

have been considered, where F̂H(y) =
∑N

i=1Diπ
−1
i I(yi≤y)/

∑N
i=1Diπ

−1
i is the Hájek estimator of FN (y).

In addition, for the population mean we also considered the Horvitz-Thompson (HT) estimator

ˆ̄Y HT = N−1
N∑
i=1

Diπ
−1
i yi,
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which is popular in practice because of its unbiasedness, although it is frequently less efficient than the255

asymptotically unbiased Hájek estimator. The simulated scenarios, are summarized in Table 1.

Table 1: Simulated scenarios

Scenarios
Population size N 200 400 800 1200 2400 5000

Sampling fraction n/N 0.04 0.20

Sample size n 8 40 16 80 32 160 48 240 96 480 200 1000

For each simulated sample, 1000 bootstrap runs are performed under the 5 resampling methods

mentioned above and dubbed R-1, R-2, H, Q and Holm respectively. The methods are compared in terms

of both Empirical Coverage (EC) and Average Length (AL) of resampling-based Confidence Intervals

(CI). The two most popular bootstrap methods have been used: 1) the bootstrap-percentile method,260

i.e. by the direct use of the the quantiles of the bootstrap replicates; and 2) the method based on the

standard Normal quantiles coupled with the (point) bootstrap estimate of the standard error, dubbed

bootstrap-stdN.

Simulation results are summarised in Figures 1 and 2. Graphs show the level of EC for increasing

population sizes; sample sizes are proportionally increasing too as a consequence of the fixed sample265

fractions (4% upper panel, 20% lower panel). AL is represented by the dimension of each points. The

solid horizontal line indicates the (nominal) confidence level 95%.

As a general remark, for small sample fraction and sizes (upper panels) all five resampling methods

tend to perform similarly for all estimators and for both types of bootstrap CIs. It is noticeable, though,

the superiority of H (left panels) against HT (right panels) for estimating the population mean. This is270

apparent for the bootstrap-stdN CIs (panel (b)) for which H estimation systematically provides better

EC, and it is also shown by the bootstrap-percentile CIs (panel (a)) for which, as population size increases,

HT estimation tends to produce excessively conservative CIs and larger ALs.

For larger sampling fraction and sizes, namely when the Hájek asymptotic setup is simulated more

effectively, differences are more evident.275

Focusing on H estimation and larger sample size (left-bottom panels), simulation results reveal some

general pattern. Our new resampling method is associated with the best results, quite uniformly for

the three parameters estimated, the three approximations R-1, R-2 and H and both types of CIs. Such

empirical evidence is consistent with the theoretical properties illustrated in Section 6. Our proposed

bootstrap algorithm seems to be able to improve upon both simulated competitors. It is somewhat more280

precise than Holmberg’s resampling (Holm), possibly because it does not require the randomization step

used in Holm to construct the pseudo-population by replicating each sample unit an integer number of

times. Our proposed resampling gives also better results than Quatember’s method (Q), which seems

13
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Figure 1: CIs for the population mean for increasing population sizes, bootstrap-percentile (a) and bootstrap-stdN (b),
two sample fractions 4% (upper panels) and 20% (lower panels) and two point estimates Hájek (left panels) and Horvitz-
Thompson (right panels)
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Figure 2: CIs for the population median (Me) (lest panels) and 75% quantile (Q3) (right panels) for increasing population
sizes, bootstrap-percentile (a) and bootstrap-stdN (b), two sample fractions 4% (upper panels) and 20% (lower panels)
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likely to bear the worst ECs and a tendency to quickly shrinking ALs as N increases. This effect is more

enhanced in case of bootstrap-percentile CIs while less evident for bootstrap-stdN CIs. Finally, among285

the three proposed probability approximations R-1, R-2 and H, the latter shows more erratic and rather

weaker performances than both R-1 and R-2 which, at their turn, appear mostly equivalent. In addition,

it is worth notice that our proposed resampling method tends to provides good CIs for quantiles, which

are population quantity usually tricky to estimate and yet relevant in practice, for instance in studies

on national income distribution and social inequalities.290

8. Concluding Remarks

In the present paper, a resampling technique for πps sampling designs is presented. Following the

classification in [? ], it represents a unified approach to resampling from finite population. On the

theoretical ground, due to its relationships with pseudo-population based resampling (cfr. Section 4), it

is “asymptotically correct” according to [? ]. However, it does not require an explicit construction of a295

pseudo-population, because bootstrap samples are directly drawn from the original sample on the basis

of an appropriate (bootstrap) weighting system, so that it is computationally efficient. Furthermore, it

is important to notice that real applications of finite population resampling usually involve some form of

rounding or re-scaling, either deterministic or based on randomization, that would affect the bootstrap

performance and ultimately the expected properties of the released bootstrap estimates. The resampling300

we propose does not need any rounding, because it admits an underlying pseudo-population even of

non-integer size, along with any real value for the bootstrap weights. As a consequence, efficiency gains

are expected. Finally, our resampling is very simple to implement, since it requires, as a resampling

design, a unique basic ppswor-type design that is easily implemented in practice.

In order to be implemented, our resampling scheme requires the choice if two quantities, namely305

(i) the number N∗i (not necessarily integer) of replicates of each sample unit i, and (ii) the drawing

probabilities p∗i .

As far as the choice of N∗i s is concerned, the most natural choice appears to be N∗i = π−1i (HT

pseudo-population), that can be implemented even if N∗i s are not integer. If attention is paid to drawing

probabilities, approximations R− 1 and R− 2 offer good results, although R− 2 is slightly heavier from310

computational viewpoint.

The simulation results of Section 7 also add numerical evidence to the theoretical justifications of

Section 6, and explain why our methodology outperform [? ] original proposal as its main competitor.
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Appendix: proofs

Proof of Proposition 1. Define, as k ≥ 1,

m∗kX =
1

N∗

∑
i∈s

N∗i x
k
i (24)

(note that m∗1X = X
∗
).315

Next, let us examine first the ratio p∗i /p
∗. From (17), (22) and (24), it follows that

p∗(i)

p∗
=

1
N∗ log

(
1− f∗N

xi

X
∗

)
1

N∗

∑
i∈sN

∗
i

(
1− f∗N

xi

X
∗

)
log
(

1− f∗N
xi

X
∗

)
=

1
N∗

(
−f∗N
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X
∗ − f∗2

N

2
x2
i

X
∗2 +O

(
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))
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)(
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(
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)(
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(
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(
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))

1
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∗
i

(
xi

X
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N

2

x2
i
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=

1
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(
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X
∗ +
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2
x2
i

X
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(
f∗2N
))

1− f∗
N

2

m∗
2X

X
∗2 +O (f∗2N )

. (25)

Similarly from (16), (17) and (21) it is seen that

π∗

π∗(i)
=

∑
i∈sN

∗
i

(
f∗N

xi

X
∗ − f∗2N

x2
i

X
∗2

)
f∗N

xi

X
∗

=
N∗

xi

(
X
∗ − f∗N

m∗2X

X
∗

)
. (26)

Now, as a consequence of (25) and (26), we have then

p∗(i)

p∗
π∗

π∗(i)
=

1− f∗N
m∗

2X

X
∗2 +

f∗
N

2
xi

X
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(
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(27)
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Finally, from (20), (27) it is not difficult to conclude that

∆∗Rij −∆∗Sij
∆∗Rij

∼

(
1−

π∗p∗(i)

p∗π∗R(i)

)(
1−

π∗p∗(j)

p∗π∗R(j)

)

=
f∗2N
4

(
xi

X
∗ −

m∗2X

X
∗2

)(
xj

X
∗ −

m∗2X

X
∗2

)
+O

(
f∗3N
)

from which (23) follows.320
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