274 research outputs found

    Comparison of EndoPredict and EPclin With Oncotype DX Recurrence Score for Prediction of Risk of Distant Recurrence After Endocrine Therapy

    Get PDF
    This work was supported by the Royal Marsden National Institutes of Health Biomedical Research Centre and the Breast Cancer Now grant awarded to MD (CTR-Q4-Y1) and the Cancer Research UK grant awarded to JC (C569/A16891)

    Current challenges of research on filamentous fungi in relation to human welfare and a sustainable bio-economy: a white paper.

    Get PDF
    The EUROFUNG network is a virtual centre of multidisciplinary expertise in the field of fungal biotechnology. The first academic-industry Think Tank was hosted by EUROFUNG to summarise the state of the art and future challenges in fungal biology and biotechnology in the coming decade. Currently, fungal cell factories are important for bulk manufacturing of organic acids, proteins, enzymes, secondary metabolites and active pharmaceutical ingredients in white and red biotechnology. In contrast, fungal pathogens of humans kill more people than malaria or tuberculosis. Fungi are significantly impacting on global food security, damaging global crop production, causing disease in domesticated animals, and spoiling an estimated 10 % of harvested crops. A number of challenges now need to be addressed to improve our strategies to control fungal pathogenicity and to optimise the use of fungi as sources for novel compounds and as cell factories for large scale manufacture of bio-based products. This white paper reports on the discussions of the Think Tank meeting and the suggestions made for moving fungal bio(techno)logy forward

    Use of a non-homologous end-joining-deficient strain (delta-ku70) of the biocontrol fungus Trichoderma virens to investigate the function of the laccase gene lcc1 in sclerotia degradation

    Get PDF
    The aim of this study was to apply a generated Δtku70 strain with increased homologous recombination efficiency from the mycoparasitic fungus Trichoderma virens for studying the involvement of laccases in the degradation of sclerotia of plant pathogenic fungi. Inactivation of the non-homologous end-joining pathway has become a successful tool in filamentous fungi to overcome poor targeting efficiencies for genetic engineering. Here, we applied this principle to the biocontrol fungus T. virens, strain I10, by deleting its tku70 gene. This strain was subsequently used to delete the laccase gene lcc1, which we found to be expressed after interaction of T. virens with sclerotia of the plant pathogenic fungi Botrytis cinerea and Sclerotinia sclerotiorum. Lcc1 was strongly upregulated at early colonization of B. cinerea sclerotia and steadily induced during colonization of S. sclerotiorum sclerotia. The Δtku70Δlcc1 mutant was altered in its ability to degrade the sclerotia of B. cinerea and S. sclerotiorum. Interestingly, while the decaying ability for B. cinerea sclerotia was significantly decreased, that to degrade S. sclerotiorum sclerotia was even enhanced, suggesting the operation of different mechanisms in the mycoparasitism of these two types of sclerotia by the laccase LCC1

    Unrestrained cleavage of Roquin-1 by MALT1 induces spontaneous T cell activation and the development of autoimmunity

    Get PDF
    Constitutive activation of the MALT1 paracaspase in conventional T cells of Malt1TBM/TBM (TRAF6 Binding Mutant = TBM) mice causes fatal inflammation and autoimmunity, but the involved targets and underlying molecular mechanisms are unknown. We genet-ically rendered a single MALT1 substrate, the RNA- binding protein (RBP) Roquin-1, insensitive to MALT1 cleavage. These Rc3h1Mins/Mins mice showed normal immune homeostasis. Combining Rc3h1Mins/Mins alleles with those encoding for constitutively active MALT1 (TBM) prevented spontaneous T cell activation and restored viability of Malt1TBM/TBM mice. Mechanistically, we show how antigen/MHC recognition is trans-lated by MALT1 into Roquin cleavage and derepression of Roquin targets. Increasing T cell receptor (TCR) signals inactivated Roquin more effectively, and only high TCR strength enabled derepression of high- affinity targets to promote Th17 differentiation. Induction of experimental autoimmune encephalomyelitis (EAE) revealed increased cleavage of Roquin-1 in disease- associated Th17 compared to Th1 cells in the CNS. T cells from Rc3h1Mins/Mins mice did not efficiently induce the high- affinity Roquin-1 target I kappa BNS in response to TCR stimulation, showed reduced Th17 differentiation, and Rc3h1Mins/Mins mice were protected from EAE. These data demonstrate how TCR signaling and MALT1 activation utilize graded cleavage of Roquin to differentially regulate target mRNAs that control T cell activation and differentiation as well as the development of autoimmunity

    B-cell receptor-driven MALT1 activity regulates MYC signaling in mantle cell lymphoma.

    Get PDF
    Mantle cell lymphoma (MCL) is a mature B-cell lymphoma characterized by poor clinical outcome. Recent studies revealed the importance of B-cell receptor (BCR) signaling in maintaining MCL survival. However, it remains unclear which role MALT1, an essential component of the CARD11-BCL10-MALT1 complex that links BCR signaling to the NF-κB pathway, plays in the biology of MCL. Here we show that a subset of MCLs is addicted to MALT1, as its inhibition by either RNA or pharmacologic interference induced cytotoxicity both in vitro and in vivo. Gene expression profiling following MALT1 inhibition demonstrated that MALT1 controls an MYC-driven gene expression network predominantly through increasing MYC protein stability. Thus, our analyses identify a previously unappreciated regulatory mechanism of MYC expression. Investigating primary mouse splenocytes, we could demonstrate that MALT1-induced MYC regulation is not restricted to MCL, but represents a common mechanism. MYC itself is pivotal for MCL survival because its downregulation and pharmacologic inhibition induced cytotoxicity in all MCL models. Collectively, these results provide a strong mechanistic rationale to investigate the therapeutic efficacy of targeting the MALT1-MYC axis in MCL patients

    JunB Inhibits ER Stress and Apoptosis in Pancreatic Beta Cells

    Get PDF
    Cytokines contribute to pancreatic β-cell apoptosis in type 1 diabetes (T1D) by modulation of β-cell gene expression networks. The transcription factor Activator Protein-1 (AP-1) is a key regulator of inflammation and apoptosis. We presently evaluated the function of the AP-1 subunit JunB in cytokine-mediated β-cell dysfunction and death. The cytokines IL-1β+IFN-γ induced an early and transitory upregulation of JunB by NF-κB activation. Knockdown of JunB by RNA interference increased cytokine-mediated expression of inducible nitric oxide synthase (iNOS) and endoplasmic reticulum (ER) stress markers, leading to increased apoptosis in an insulin-producing cell line (INS-1E) and in purified rat primary β-cells. JunB knockdown β-cells and junB−/− fibroblasts were also more sensitive to the chemical ER stressor cyclopiazonic acid (CPA). Conversely, adenoviral-mediated overexpression of JunB diminished iNOS and ER markers expression and protected β-cells from cytokine-induced cell death. These findings demonstrate a novel and unexpected role for JunB as a regulator of defense mechanisms against cytokine- and ER stress-mediated apoptosis

    Silencing of Vlaro2 for chorismate synthase revealed that the phytopathogen Verticillium longisporum induces the cross-pathway control in the xylem

    Get PDF
    The first leaky auxotrophic mutant for aromatic amino acids of the near-diploid fungal plant pathogen Verticillium longisporum (VL) has been generated. VL enters its host Brassica napus through the roots and colonizes the xylem vessels. The xylem contains little nutrients including low concentrations of amino acids. We isolated the gene Vlaro2 encoding chorismate synthase by complementation of the corresponding yeast mutant strain. Chorismate synthase produces the first branch point intermediate of aromatic amino acid biosynthesis. A novel RNA-mediated gene silencing method reduced gene expression of both isogenes by 80% and resulted in a bradytrophic mutant, which is a leaky auxotroph due to impaired expression of chorismate synthase. In contrast to the wild type, silencing resulted in increased expression of the cross-pathway regulatory gene VlcpcA (similar to cpcA/GCN4) during saprotrophic life. The mutant fungus is still able to infect the host plant B. napus and the model Arabidopsis thaliana with reduced efficiency. VlcpcA expression is increased in planta in the mutant and the wild-type fungus. We assume that xylem colonization requires induction of the cross-pathway control, presumably because the fungus has to overcome imbalanced amino acid supply in the xylem

    Factors Associated with Bovine Neonatal Pancytopenia (BNP) in Calves: A Case-Control Study

    Get PDF
    Bovine neonatal pancytopenia (BNP; previously known as idiopathic haemorrhagic diathesis and commonly known as bleeding calf syndrome) is a novel haemorrhagic disease of young calves which has emerged in a number of European countries during recent years. Data were retrospectively collected during June to November 2010 for 56 case calves diagnosed with BNP between 17 March and 7 June of the same year. These were compared with 58 control calves randomly recruited from herds with no history of BNP. Multivariable logistic regression analysis showed that increased odds of a calf being a BNP case were associated with its dam having received PregSure® BVD (Pfizer Animal Health) vaccination prior to the birth of the calf (odds ratio (OR) 40.78, p<0.001) and its herd of origin being located in Scotland (OR 9.71, p = 0.006). Decreased odds of a calf being a BNP case were associated with the calf having been kept outside (OR 0.11, p = 0.006). The longer that a cattle herd had been established on the farm was also associated with decreased odds of a calf in that herd being a BNP case (OR 0.97, p = 0.011)

    GAIA: a gram-based interaction analysis tool – an approach for identifying interacting domains in yeast

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein-Protein Interactions (PPIs) play important roles in many biological functions. Protein domains, which are defined as independently folding structural blocks of proteins, physically interact with each other to perform these biological functions. Therefore, the identification of Domain-Domain Interactions (DDIs) is of great biological interests because it is generally accepted that PPIs are mediated by DDIs. As a result, much effort has been put on the prediction of domain pair interactions based on computational methods. Many DDI prediction tools using PPIs network and domain evolution information have been reported. However, tools that combine the primary sequences, domain annotations, and structural annotations of proteins have not been evaluated before.</p> <p>Results</p> <p>In this study, we report a novel approach called Gram-bAsed Interaction Analysis (GAIA). GAIA extracts peptide segments that are composed of fixed length of continuous amino acids, called n-grams (where n is the number of amino acids), from the annotated domain and DDI data set in <it>Saccharomyces cerevisiae </it>(budding yeast) and identifies a list of n-grams that may contribute to DDIs and PPIs based on the frequencies of their appearance. GAIA also reports the coordinate position of gram pairs on each interacting domain pair. We demonstrate that our approach improves on other DDI prediction approaches when tested against a gold-standard data set and achieves a true positive rate of 82% and a false positive rate of 21%. We also identify a list of 4-gram pairs that are significantly over-represented in the DDI data set and may mediate PPIs.</p> <p>Conclusion</p> <p>GAIA represents a novel and reliable way to predict DDIs that mediate PPIs. Our results, which show the localizations of interacting grams/hotspots, provide testable hypotheses for experimental validation. Complemented with other prediction methods, this study will allow us to elucidate the interactome of cells.</p
    corecore