114 research outputs found

    Resorbable screws versus pins for optimal transplant fixation (SPOT) in anterior cruciate ligament replacement with autologous hamstring grafts: rationale and design of a randomized, controlled, patient and investigator blinded trial [ISRCTN17384369]

    Get PDF
    BACKGROUND: Ruptures of the anterior cruciate ligament (ACL) are common injuries to the knee joint. Arthroscopic ACL replacement by autologous tendon grafts has established itself as a standard of care. Data from both experimental and observational studies suggest that surgical reconstruction does not fully restore knee stability. Persisting anterior laxity may lead to recurrent episodes of giving-way and cartilage damage. This might at least in part depend on the method of graft fixation in the bony tunnels. Whereas resorbable screws are easy to handle, pins may better preserve graft tension. The objective of this study is to determine whether pinning of ACL grafts reduces residual anterior laxity six months after surgery as compared to screw fixation. DESIGN/ METHODS: SPOT is a randomised, controlled, patient and investigator blinded trial conducted at a single academic institution. Eligible patients are scheduled to arthroscopic ACL repair with triple-stranded hamstring grafts, conducted by a single, experienced surgeon. Intraoperatively, subjects willing to engage in this study will be randomised to transplant tethering with either resorbable screws or resorbable pins. No other changes apply to locally established treatment protocols. Patients and clinical investigators will remain blinded to the assigned fixation method until the six-month follow-up examination. The primary outcome is the side-to-side (repaired to healthy knee) difference in anterior translation as measured by the KT-1000 arthrometer at a defined load (89 N) six months after surgery. A sample size of 54 patients will yield a power of 80% to detect a difference of 1.0 mm ± standard deviation 1.2 mm at a two-sided alpha of 5% with a t-test for independent samples. Secondary outcomes (generic and disease-specific measures of quality of life, magnetic resonance imaging morphology of transplants and devices) will be handled in an exploratory fashion. CONCLUSION: SPOT aims at showing a reduction in anterior knee laxity after fixing ACL grafts by pins compared to screws

    Mobile measurements of ship emissions in two harbour areas in Finland

    Get PDF
    Four measurement campaigns were performed in two different environments – inside the harbour areas in the city centre of Helsinki, and along the narrow shipping channel near the city of Turku, Finland – using a mobile laboratory van during winter and summer conditions in 2010–2011. The characteristics of gaseous (CO, CO2, SO2, NO, NO2, NOx) and particulate (number and volume size distributions as well as PM2.5) emissions for 11 ships regularly operating on the Baltic Sea were studied to determine the emission parameters. The highest particle concentrations were 1.5 × 106 and 1.6 × 105 cm−3 in Helsinki and Turku, respectively, and the particle number size distributions had two modes. The dominating mode peaked at 20–30 nm, and the accumulation mode at 80–100 nm. The majority of the particle mass was volatile, since after heating the sample to 265 °C, the particle volume of the studied ship decreased by around 70%. The emission factors for NOx varied in the range of 25–100 g (kg fuel)−1, for SO2 in the range of 2.5–17.0 g (kg fuel)−1, for particle number in the range of (0.32–2.26) × 1016 # (kg fuel)−1, and for PM2.5 between 1.0–4.9 g (kg fuel)−1. The ships equipped with SCR (selective catalytic reduction) had the lowest NOx emissions, whereas the ships with DWI (direct water injection) and HAMs (humid air motors) had the lowest SO2 emissions but the highest particulate emissions. For all ships, the averaged fuel sulphur contents (FSCs) were less than 1% (by mass) but none of them was below 0.1% which will be the new EU directive starting 1 January 2015 in the SOx emission control areas; this indicates that ships operating on the Baltic Sea will face large challenges

    Characterization of volatile organic compounds and submicron organic aerosol in a traffic environment

    Get PDF
    Urban air consists of a complex mixture of gaseous and particulate species from anthropogenic and biogenic sources that are further processed in the atmosphere. This study investigated the characteristics and sources of volatile organic compounds (VOCs) and submicron organic aerosol (OA) in a traffic environment in Helsinki, Finland, in late summer. The anthropogenic VOCs (aVOCs; aromatic hydrocarbons) and biogenic VOCs (bVOCs; terpenoids) relevant for secondary-organic-aerosol formation were analyzed with an online gas chromatograph mass spectrometer, whereas the composition and size distribution of submicron particles was measured with a soot particle aerosol mass spectrometer. This study showed that aVOC concentrations were significantly higher than bVOC concentrations in the traffic environment. The largest aVOC concentrations were measured for toluene (campaign average of 1630 ng m−3) and p/m xylene (campaign average of 1070 ng m−3), while the dominating bVOC was α-pinene (campaign average of 200 ng m−3). For particle-phase organics, the campaign-average OA concentration was 2.4 µg m−3. The source apportionment analysis extracted six factors for OA. Three OA factors were related to primary OA sources – traffic (24 % of OA, two OA types) and a coffee roastery (7 % of OA) – whereas the largest fraction of OA (69 %) consisted of oxygenated OA (OOA). OOA was divided into less oxidized semi-volatile OA (SV-OOA; 40 % of OA) and two types of low-volatility OA (LV-OOA; 30 %). The focus of this research was also on the oxidation potential of the measured VOCs and the association between VOCs and OA in ambient air. Production rates of the oxidized compounds (OxPR) from the VOC reactions revealed that the main local sources of the oxidation products were O3 oxidation of bVOCs (66 % of total OxPR) and OH radical oxidation of aVOCs and bVOCs (25 % of total OxPR). Overall, aVOCs produced a much smaller portion of the oxidation products (18 %) than bVOCs (82 %). In terms of OA factors, SV-OOA was likely to originate from biogenic sources since it correlated with an oxidation product of monoterpene, nopinone. LV-OOA consisted of highly oxygenated long-range or regionally transported OA that had no correlation with local oxidant concentrations as it had already spent several days in the atmosphere before reaching the measurement site. In general, the main sources were different for VOCs and OA in the traffic environment. Vehicle emissions impacted both VOC and OA concentrations. Due to the specific VOCs attributed to biogenic emissions, the influence of biogenic emissions was more clearly detected in the VOC concentrations than in OA. In contrast, the emissions from the local coffee roastery had a distinctive mass spectrum for OA, but they could not be seen in the VOC measurements due to the measurement limitations for the large VOC compounds. Long-range transport increased the OA concentration and oxidation state considerably, while its effect was observed less clearly in the VOC measurements due to the oxidation of most VOC in the atmosphere during the transport. Overall, this study revealed that in order to properly characterize the impact of different emission sources on air quality, health, and climate, it is of importance to describe both gaseous and particulate emissions and understand how they interact as well as their phase transfers in the atmosphere during the aging process.</p

    Calcium:Magnesium Ratio in Local Groundwater and Incidence of Acute Myocardial Infarction among Males in Rural Finland

    Get PDF
    Several epidemiologic studies have shown an association between calcium and magnesium and coronary heart disease mortality and morbidity. In this small-area study, we examined the relationship between acute myocardial infarction (AMI) risk and content of Ca, Mg, and chromium in local groundwater in Finnish rural areas using Bayesian modeling and geospatial data aggregated into 10 km × 10 km grid cells. Data on 14,495 men 35–74 years of age with their first AMI in the years 1983, 1988, or 1993 were pooled. Geochemical data consisted of 4,300 measurements of each element in local groundwater. The median concentrations of Mg, Ca, and Cr and the Ca:Mg ratio in well water were 2.61 mg/L, 12.23 mg/L, 0.27 μg/L, and 5.39, respectively. Each 1 mg/L increment in Mg level decreased the AMI risk by 4.9%, whereas a one unit increment in the Ca:Mg ratio increased the risk by 3.1%. Ca and Cr did not show any statistically significant effect on the incidence and spatial variation of AMI. Results of this study with specific Bayesian statistical analysis support earlier findings of a protective role of Mg and low Ca:Mg ratio against coronary heart disease but do not support the earlier hypothesis of a protective role of Ca

    A direct physical interaction between Nanog and Sox2 regulates embryonic stem cell self-renewal

    Get PDF
    Embryonic stem (ES) cell self-renewal efficiency is determined by the Nanog protein level. However, the protein partners of Nanog that function to direct self-renewal are unclear. Here, we identify a Nanog interactome of over 130 proteins including transcription factors, chromatin modifying complexes, phosphorylation and ubiquitination enzymes, basal transcriptional machinery members, and RNA processing factors. Sox2 was identified as a robust interacting partner of Nanog. The purified Nanog–Sox2 complex identified a DNA recognition sequence present in multiple overlapping Nanog/Sox2 ChIP-Seq data sets. The Nanog tryptophan repeat region is necessary and sufficient for interaction with Sox2, with tryptophan residues required. In Sox2, tyrosine to alanine mutations within a triple-repeat motif (S X T/S Y) abrogates the Nanog–Sox2 interaction, alters expression of genes associated with the Nanog-Sox2 cognate sequence, and reduces the ability of Sox2 to rescue ES cell differentiation induced by endogenous Sox2 deletion. Substitution of the tyrosines with phenylalanine rescues both the Sox2–Nanog interaction and efficient self-renewal. These results suggest that aromatic stacking of Nanog tryptophans and Sox2 tyrosines mediates an interaction central to ES cell self-renewal

    Fixation strength of biocomposite wedge interference screw in ACL reconstruction: effect of screw length and tunnel/screw ratio. A controlled laboratory study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Primary stability of the graft is essential in anterior cruciate ligament surgery. An optimal method of fixation should be easy to insert and provide great resistance against pull-out forces.</p> <p>A controlled laboratory study was designed to test the primary stability of ACL tendinous grafts in the tibial tunnel. The correlation between resistance to traction forces and the cross-section and length of the screw was studied.</p> <p>Methods</p> <p>The tibial phase of ACL reconstruction was performed in forty porcine tibias using digital flexor tendons of the same animal. An 8 mm tunnel was drilled in each specimen and two looped tendons placed as graft. Specimens were divided in five groups according to the diameter and length of the screw used for fixation. Wedge interference screws were used. Longitudinal traction was applied to the graft with a Servohydraulic Fatigue System. Load and displacement were controlled and analyzed.</p> <p>Results</p> <p>The mean loads to failure for each group were 295,44 N (Group 1; 9 × 23 screw), 564,05 N (Group 2; 9 × 28), 614,95 N (Group 3; 9 × 35), 651,14 N (Group 4; 10 × 28) and 664,99 (Group 5; 10 × 35). No slippage of the graft was observed in groups 3, 4 and 5. There were significant differences in the load to failure among groups (ANOVA/P < 0.001).</p> <p>Conclusions</p> <p>Longer and wider interference screws provide better fixation in tibial ACL graft fixation. Short screws (23 mm) do not achieve optimal fixation and should be implanted only with special requirements.</p

    An economic way of reducing health, environmental, and other pressures of urban traffic: a decision analysis on trip aggregation

    Get PDF
    BACKGROUND: Traffic congestion is rapidly becoming the most important obstacle to urban development. In addition, traffic creates major health, environmental, and economical problems. Nonetheless, automobiles are crucial for the functions of the modern society. Most proposals for sustainable traffic solutions face major political opposition, economical consequences, or technical problems. METHODS: We performed a decision analysis in a poorly studied area, trip aggregation, and studied decisions from the perspective of two different stakeholders, the passenger and society. We modelled the impact and potential of composite traffic, a hypothetical large-scale demand-responsive public transport system for the Helsinki metropolitan area, where a centralised system would collect the information on all trip demands online, would merge the trips with the same origin and destination into public vehicles with eight or four seats, and then would transmit the trip instructions to the passengers' mobile phones. RESULTS: We show here that in an urban area with one million inhabitants, trip aggregation could reduce the health, environmental, and other detrimental impacts of car traffic typically by 50–70%, and if implemented could attract about half of the car passengers, and within a broad operational range would require no public subsidies. CONCLUSION: Composite traffic provides new degrees of freedom in urban decision-making in identifying novel solutions to the problems of urban traffic

    Vaccine Platforms Combining Circumsporozoite Protein and Potent Immune Modulators, rEA or EAT-2, Paradoxically Result in Opposing Immune Responses

    Get PDF
    Malaria greatly impacts the health and wellbeing of over half of the world's population. Promising malaria vaccine candidates have attempted to induce adaptive immune responses to Circumsporozoite (CS) protein. Despite the inclusion of potent adjuvants, these vaccines have limited protective efficacy. Conventional recombinant adenovirus (rAd) based vaccines expressing CS protein can induce CS protein specific immune responses, but these are essentially equivalent to those generated after use of the CS protein subunit based vaccines. In this study we combined the use of rAds expressing CS protein along with rAds expressing novel innate immune response modulating proteins in an attempt to significantly improve the induction of CS protein specific cell mediated immune (CMI) responses.BALB/cJ mice were co-vaccinated with a rAd vectors expressing CS protein simultaneous with a rAd expressing either TLR agonist (rEA) or SLAM receptors adaptor protein (EAT-2). Paradoxically, expression of the TLR agonist uncovered a potent immunosuppressive activity inherent to the combined expression of the CS protein and rEA. Fortunately, use of the rAd vaccine expressing EAT-2 circumvented CS protein's suppressive activity, and generated a fivefold increase in the number of CS protein responsive, IFNγ secreting splenocytes, as well as increased the breadth of T cells responsive to peptides present in the CS protein. These improvements were positively correlated with the induction of a fourfold improvement in CS protein specific CTL functional activity in vivo.Our results emphasize the need for caution when incorporating CS protein into malaria vaccine platforms expressing or containing other immunostimulatory compounds, as the immunological outcomes may be unanticipated and/or counter-productive. However, expressing the SLAM receptors derived signaling adaptor EAT-2 at the same time of vaccination with CS protein can overcome these concerns, as well as significantly improve the induction of malaria antigen specific adaptive immune responses in vivo

    Biomechanics and anterior cruciate ligament reconstruction

    Get PDF
    For years, bioengineers and orthopaedic surgeons have applied the principles of mechanics to gain valuable information about the complex function of the anterior cruciate ligament (ACL). The results of these investigations have provided scientific data for surgeons to improve methods of ACL reconstruction and postoperative rehabilitation. This review paper will present specific examples of how the field of biomechanics has impacted the evolution of ACL research. The anatomy and biomechanics of the ACL as well as the discovery of new tools in ACL-related biomechanical study are first introduced. Some important factors affecting the surgical outcome of ACL reconstruction, including graft selection, tunnel placement, initial graft tension, graft fixation, graft tunnel motion and healing, are then discussed. The scientific basis for the new surgical procedure, i.e., anatomic double bundle ACL reconstruction, designed to regain rotatory stability of the knee, is presented. To conclude, the future role of biomechanics in gaining valuable in-vivo data that can further advance the understanding of the ACL and ACL graft function in order to improve the patient outcome following ACL reconstruction is suggested
    corecore