20 research outputs found
Exploring the interplay between stress mediators and skin microbiota in shaping age-related hallmarks: a review
Psychological stress is a major contributing factor to several health problems (e.g., depression, cardiovascular disease). Around 35% of the world’s population suffers from it, including younger generations. Physiologically, stress manifests through neuroendocrine pathways (Hypothalamic-Pituitary-Adrenal (HPA) axis and Sympathetic-Adrenal-Medullary (SAM) system) which culminate in the production of stress mediators like cortisol, epinephrine and norepinephrine. Stress and its mediators have been associated to body aging, through molecular mechanisms such as telomere attrition, mitochondrial dysfunction, cellular senescence, chronic inflammation, and dysbiosis, among others. Regarding its impact in the skin, stress impacts its structural integrity and physiological function. Despite this review focusing on several hallmarks of aging, emphasis was placed on skin microbiota dysbiosis. In this line, several studies, comprising different age groups, demographic contexts and body sites, have reported skin microbiota alterations associated with aging, and some effects of stress mediators on skin microbiota have also been reviewed in this paper. From a different perspective, since it is not a “traditional” stress mediator, oxytocin, a cortisol antagonist, has been related to glucorticoids inhibition and to display positive effects on cellular aging. This hormone dysregulation has been associated to psychological issues such as depression, whereas its upregulation has been linked to positive social interaction.info:eu-repo/semantics/publishedVersio
Src Utilizes Cas to Block Gap Junctional Communication Mediated by Connexin43
The Src tyrosine kinase phosphorylates Cas (Crk-associated substrate) to confer anchorage independence and invasive growth potential to transformed cells. Gap junctional communication is often lower between aggressive tumor cells compared with normal or benign precursors. The gap junction protein connexin43 (Cx43) is a tumor suppressor that can inhibit tumor cell growth. Src can phosphorylate Cx43 to block gap junctional communication between transformed cells. However, mechanisms by which this event actually closes intercellular channels have not been clearly defined. Here, we report that Src and Cas associate with each other at intercellular junctions. In addition, Cas is required for Src to reduce dye transfer and electrical coupling between cells expressing Cx43. Thus, Src utilizes Cas to inhibit gap junctional communication mediated by Cx43. This finding introduces a novel role of the Cas focal adhesion linker protein in the gap junction complex. This observation may help explain how gap junctional communication can be suppressed between malignant and metastatic tumor cells
Src activates Abl to augment Robo1 expression in order to promote tumor cell migration
Cell migration is an essential step in cancer invasion and metastasis. A number of orchestrated cellular events involving tyrosine kinases and signaling receptors enable cancer cells to dislodge from primary tumors and colonize elsewhere in the body. For example, activation of the Src and Abl kinases can mediate events that promote tumor cell migration. Also, activation of the Robo1 receptor can induce tumor cell migration. However, while the importance of Src, Abl, and Robo1 in cell migration have been demonstrated, molecular mechanisms by which they collectively influence cell migration have not been clearly elucidated. In addition, little is known about mechanisms that control Robo1 expression. We report here that Src activates Abl to stabilize Robo1 in order to promote cell migration. Inhibition of Abl kinase activity by siRNA or kinase blockers decreased Robo1 protein levels and suppressed the migration of transformed cells. We also provide evidence that Robo1 utilizes Cdc42 and Rac1 GTPases to induce cell migration. In addition, inhibition of Robo1 signaling can suppress transformed cell migration in the face of robust Src and Abl kinase activity. Therefore, inhibitors of Src, Abl, Robo1 and small GTPases may target a coordinated pathway required for tumor cell migration
Sm/Lsm Genes Provide a Glimpse into the Early Evolution of the Spliceosome
The spliceosome, a sophisticated molecular machine involved in the removal of intervening sequences from the coding sections of eukaryotic genes, appeared and subsequently evolved rapidly during the early stages of eukaryotic evolution. The last eukaryotic common ancestor (LECA) had both complex spliceosomal machinery and some spliceosomal introns, yet little is known about the early stages of evolution of the spliceosomal apparatus. The Sm/Lsm family of proteins has been suggested as one of the earliest components of the emerging spliceosome and hence provides a first in-depth glimpse into the evolving spliceosomal apparatus. An analysis of 335 Sm and Sm-like genes from 80 species across all three kingdoms of life reveals two significant observations. First, the eukaryotic Sm/Lsm family underwent two rapid waves of duplication with subsequent divergence resulting in 14 distinct genes. Each wave resulted in a more sophisticated spliceosome, reflecting a possible jump in the complexity of the evolving eukaryotic cell. Second, an unusually high degree of conservation in intron positions is observed within individual orthologous Sm/Lsm genes and between some of the Sm/Lsm paralogs. This suggests that functional spliceosomal introns existed before the emergence of the complete Sm/Lsm family of proteins; hence, spliceosomal machinery with considerably fewer components than today's spliceosome was already functional
Effectiveness of myAirCoach: A mHealth Self-Management System in Asthma
Background: Self-management programs have beneficial effects on asthma control, but their implementation in clinical practice is poor. Mobile health (mHealth) could play an important role in enhancing self-management. Objective: To assess the clinical effectiveness and technology acceptance of myAirCoach-supported self-management on top of usual care in patients with asthma using inhalation medication. Methods: Patients were recruited in 2 separate studies. The myAirCoach system consisted of an inhaler adapter, an indoor air-quality monitor, a physical activity tracker, a portable spirometer, a fraction exhaled nitric oxide device, and an app. The primary outcome was asthma control; secondary outcomes were exacerbations, quality of life, and technology acceptance. In study 1, 30 participants were randomized to either usual care or myAirCoach support for 3 to 6 months; in study 2, 12 participants were provided with the myAirCoach system in a 3-month before-after study. Results: In study 1, asthma control improved in the intervention group compared with controls (Asthma Control Questionnaire difference, 0.70; P =.006). A total of 6 exacerbations occurred in the intervention group compared with 12 in the control group (hazard ratio, 0.31; P =.06). Asthma-related quality of life improved (mini Asthma-related Quality of Life Questionnaire difference, 0.53; P =.04), but forced expiratory volume in 1 second was unchanged. In study 2, asthma control improved by 0.86 compared with baseline (P =.007) and quality of life by 0.16 (P =.64). Participants reported positive attitudes toward the system. Discussion: Using the myAirCoach support system improves asthma control and quality of life, with a reduction in severe asthma exacerbations. Well-validated mHealth technologies should therefore be further studied
Data-driven adult asthma phenotypes based on clinical characteristics are associated with asthma outcomes twenty years later
Research based on cluster analyses led to the identification of particular phenotypes confirming phenotypic heterogeneity of asthma. The long-term clinical course of asthma phenotypes defined by clustering analysis remains unknown, although it is a key aspect to underpin their clinical relevance. We aimed to estimate risk of poor asthma events between asthma clusters identified 20 years earlier.; The study relied on two cohorts of adults with asthma with 20-year follow-up, ECRHS (European Community Respiratory Health Survey) and EGEA (Epidemiological study on Genetics and Environment of Asthma). Regression models were used to compare asthma characteristics (current asthma, asthma exacerbations, asthma control, quality of life, and FEV; 1; ) at follow-up and the course of FEV; 1; between seven cluster-based asthma phenotypes identified 20 years earlier.; The analysis included 1325 adults with ever asthma. For each asthma characteristic assessed at follow-up, the risk for adverse outcomes differed significantly between the seven asthma clusters identified at baseline. As compared with the mildest asthma phenotype, ORs (95% CI) for asthma exacerbations varied from 0.9 (0.4 to 2.0) to 4.0 (2.0 to 7.8) and the regression estimates (95% CI) for FEV; 1; % predicted varied from 0.6 (-3.5 to 4.6) to -9.9 (-14.2 to -5.5) between clusters. Change in FEV; 1; over time did not differ significantly across clusters.; Our findings show that the long-term risk for poor asthma outcomes differed between comprehensive adult asthma phenotypes identified 20 years earlier, and suggest a strong tracking of asthma activity and impaired lung function over time