911 research outputs found

    Optimism Experiment and Development of Space-qualified Seismometers in France

    Get PDF
    The OPTIMISM experiment will put two magnetometers and two seismometers on the Martian floor in 1995, within the framework of the Mars '94 mission. The seismometers are put within the two small surface stations. The seismometer sensitivity will be better than 10 exp -9 g at 1 Hz, 2 orders of magnitude higher than the Viking seismometer sensitivity. A priori waveform modeling for seismic signals on Mars shows that it will be sufficient to detect quakes with a seismic moment greater than 10 exp 15 Nm everywhere on Mars. Such events, according to the hypothesis of a thermoelastic cooling of the Martian lithosphere, are expected to occur at a rate close to one per week and may therefore be observed within the l-year lifetime of the experiment. Other aspects of the experiment are discussed

    Dynamics of Charge Leakage From Self-assembled CdTe Quantum Dots

    Full text link
    We study the leakage dynamics of charge stored in an ensemble of CdTe quantum dots embedded in a field-effect structure. Optically excited electrons are stored and read out by a proper time sequence of bias pulses. We monitor the dynamics of electron loss and find that the rate of the leakage is strongly dependent on time, which we attribute to an optically generated electric field related to the stored charge. A rate equation model quantitatively reproduces the results.Comment: 4 pages, submitted to Applied Physics Letter

    Optical manipulation of a single Mn spin in a CdTe-based quantum dot

    Full text link
    A system of two coupled CdTe quantum dots, one of them containing a single Mn ion, was studied in continuous wave and modulated photoluminescence, photoluminescence excitation, and photon correlation experiments. Optical writing of information in the spin state of the Mn ion has been demonstrated, using orientation of the Mn spin by spin-polarized carriers transferred from the neighbor quantum dot. Mn spin orientation time values from 20 ns to 100 ns were measured, depending on the excitation power. Storage time of the information in the Mn spin was found to be enhanced by application of a static magnetic field of 1 T, reaching hundreds of microseconds in the dark. Simple rate equation models were found to describe correctly static and dynamical properties of the system.Comment: 4 pages, 3 figure

    Single spin optical read-out in CdTe/ZnTe quantum dot studied by photon correlation spectroscopy

    Full text link
    Spin dynamics of a single electron and an exciton confined in CdTe/ZnTe quantum dot is investigated by polarization-resolved correlation spectroscopy. Spin memory effects extending over at least a few tens of nanoseconds have been directly observed in magnetic field and described quantitatively in terms of a simple rate equation model. We demonstrate an effective (68%) all-optical read-out of the single carrier spin state through probing the degree of circular polarization of exciton emission after capture of an oppositely charged carrier. The perturbation introduced by the pulsed optical excitation serving to study the spin dynamics has been found to be the main source of the polarization loss in the read-out process. In the limit of low laser power the read-out efficiency extrapolates to a value close to 100%. The measurements allowed us as well to determine neutral exciton spin relaxation time ranging from 3.4 +/- 0.1 ns at B = 0 T to 16 +/- 3 ns at B = 5 T.Comment: to appear in Phys. Rev.

    Fractional Quantum Hall Effect in a Diluted Magnetic Semiconductor

    Get PDF
    We report the observation of the fractional quantum Hall effect in the lowest Landau level of a two-dimensional electron system (2DES), residing in the diluted magnetic semiconductor Cd(1-x)Mn(x)Te. The presence of magnetic impurities results in a giant Zeeman splitting leading to an unusual ordering of composite fermion Landau levels. In experiment, this results in an unconventional opening and closing of fractional gaps around filling factor v = 3/2 as a function of an in-plane magnetic field, i.e. of the Zeeman energy. By including the s-d exchange energy into the composite Landau level spectrum the opening and closing of the gap at filling factor 5/3 can be modeled quantitatively. The widely tunable spin-splitting in a diluted magnetic 2DES provides a novel means to manipulate fractional states

    Influence of exciton spin relaxation on the photoluminescence spectra of semimagnetic quantum dots

    Full text link
    We present a comprehensive experimental and theoretical studies of photoluminescence of single CdMnTe quantum dots with Mn content x ranging from 0.01 to 0.2. We distinguish three stages of the equilibration of the exciton-Mn ion spin system and show that the intermediate stage, in which the exciton spin is relaxed, while the total equilibrium is not attained, gives rise to a specific asymmetric shape of the photoluminescence spectrum. From an excellent agreement between the measured and calculated spectra we are able to evaluate the exciton localization volume, number of paramagnetic Mn ions, and their temperature for each particular dot. We discuss the values of these parameters and compare them with results of other experiments. Furthermore, we analyze the dependence of average Zeeman shifts and transition linewidths on the Mn content and point out specific processes, which control these values at particular Mn concentrations.Comment: submitted to Phys. Rev.

    Enhancement of the spin-gap in fully occupied two-dimensional Landau levels

    Full text link
    Polarization-resolved magneto-luminescence, together with simultaneous magneto-transport measurements, have been performed on a two-dimensional electron gas (2DEG) confined in CdTe quantum well in order to determine the spin-splitting of fully occupied electronic Landau levels, as a function of the magnetic field (arbitrary Landau level filling factors) and temperature. The spin splitting, extracted from the energy separation of the \sigma+ and \sigma- transitions, is composed of the ordinary Zeeman term and a many-body contribution which is shown to be driven by the spin-polarization of the 2DEG. It is argued that both these contributions result in a simple, rigid shift of Landau level ladders with opposite spins.Comment: 4 pages, 3 figure
    corecore