102 research outputs found
Loss of TOP3B leads to increased R-loop formation and genome instability
Topoisomerase III beta (TOP3B) is one of the least understood members of the topoisomerase family of proteins and remains enigmatic. Our recent data shed light on the function and relevance of TOP3B to disease. A homozygous deletion for the TOP3B gene was identified in a patient with bilateral renal cancer. Analyses in both patient and modelled human cells show the disruption of TOP3B causes genome instability with a rise in DNA damage and chromosome bridging (mis-segregation). The primary molecular defect underlying this pathology is a significant increase in R-loop formation. Our data show that TOP3B is necessary to prevent the accumulation of excessive R-loops and identify TOP3B as a putative cancer gene, and support recent data showing that R-loops are involved in cancer aetiology
Targeting the Mitotic Checkpoint to Kill Tumor Cells
One of the most common hallmarks of cancer cells is aneuploidy or an abnormal number of chromosomes. This abnormal chromosome content is a consequence of chromosome missegregation during mitosis, a defect that is seen more frequently in tumor cell divisions as in normal cell divisions. In fact, a large fraction of human tumors display a chromosome instable phenotype, meaning that they very frequently missegregate chromosomes. This can cause variegated aneuploidy within the tumor tissue. It has been argued that this hallmark of cancer could be exploited in anti-cancer therapies. Here we test this hypothesis by inactivation of the mitotic checkpoint through RNAi-mediated depletion of an essential checkpoint component, Mps1. The mitotic checkpoint delays segregation of chromosomes during mitosis until all chromosomes are properly attached to the mitotic spindle. Its inactivation will therefore lead to increased segregation errors. Indeed, we show that this can lead to increased cell death in tumor cells. We demonstrate that increased cell death is associated with a dramatic increase in segregation errors. This suggests that inhibition of the mitotic checkpoint might represent a useful anti-cancer strategy
Active centromere and chromosome identification in fixed cell lines
BACKGROUND: The centromere plays a crucial role in ensuring the fidelity of chromosome segregation during cell divisions. However, in cancer and constitutional disorders, the presence of more than one active centromere on a chromosome may be a contributing factor to chromosome instability and could also have predictive value in disease progression, making the detection of properly functioning centromeres important. Thus far, antibodies that are widely used for functional centromere detection mainly work on freshly harvested cells whereas most cytogenetic samples are stored long-term in methanol-acetic acid fixative. Hence, we aimed to identify antibodies that would recognise active centromere antigens on methanol-acetic acid fixed cells. RESULTS: A panel of active centromere protein antibodies was tested and we found that a rabbit monoclonal antibody against human CENP-C recognises the active centromeres of cells fixed in methanol-acetic acid. We then tested and compared combinations of established methods namely centromere fluorescence in situ hybridisation (cenFISH), centromere protein immunofluorescence (CENP-IF) and multicolour FISH (mFISH), and showed the usefulness of CENP-IF together with cenFISH followed by mFISH (CENP-IF-cenFISH-mFISH) with the aforementioned anti-CENP-C antibody. We further demonstrated the utility of our method in two cancer cell lines with high proportion of centromere defects namely neocentromere and functional dicentric. CONCLUSIONS: We propose the incorporation of the CENP-IF-cenFISH-mFISH method using a commercially available rabbit monoclonal anti-CENP-C into established methods such as dicentric chromosome assay (DCA), prenatal karyotype screening in addition to constitutional and cancer karyotyping. This method will provide a more accurate assessment of centromere abnormality status in chromosome instability disorders
Spindle Assembly Checkpoint Regulates Mitotic Cell Cycle Progression during Preimplantation Embryo Development
Errors in chromosome segregation or distribution may result in aneuploid embryo formation, which causes implantation failure, spontaneous abortion, genetic diseases, or embryo death. Embryonic aneuploidy occurs when chromosome aberrations are present in gametes or early embryos. To date, it is still unclear whether the spindle assembly checkpoint (SAC) is required for the regulation of mitotic cell cycle progression to ensure mitotic fidelity during preimplantation development. In this study, using overexpression and RNA interference (RNAi) approaches, we analyzed the role of SAC components (Bub3, BubR1 and Mad2) in mouse preimplantation embryos. Our data showed that overexpressed SAC components inhibited metaphase-anaphase transition by preventing sister chromatid segregation. Deletion of SAC components by RNAi accelerated the metaphase-anaphase transition during the first cleavage and caused micronuclei formation, chromosome misalignment and aneuploidy, which caused decreased implantation and delayed development. Furthermore, in the presence of the spindle-depolymerizing drug nocodazole, SAC depleted embryos failed to arrest at metaphase. Our results suggest that SAC is essential for the regulation of mitotic cell cycle progression in cleavage stage mouse embryos
Ribosomal DNA copy loss and repeat instability in ATRX-mutated cancers
ATRX (alpha thalassemia/mental retardation X-linked) complexes with DAXX to deposit histone variant H3.3 into repetitive heterochromatin. Recent genome sequencing studies in cancers have revealed mutations in ATRX and their association with ALT (alternative lengthening of telomeres) activation. Here we report depletion of ATRX in mouse ES cells leads to selective loss in ribosomal RNA gene (rDNA) copy number. Supporting this, ATRX-mutated human ALT-positive tumors also show a substantially lower rDNA copy than ALT-negative tumors. Further investigation shows that the rDNA copy loss and repeat instability are caused by a disruption in H3.3 deposition and thus a failure in heterochromatin formation at rDNA repeats in the absence of ATRX. We also find that ATRX-depleted cells are reduced in ribosomal RNA transcription output and show increased sensitivity to RNA polymerase I (Pol I) transcription inhibitor CX5461. In addition, human ALT-positive cancer cell lines are also more sensitive to CX5461 treatment. Our study provides insights into the contribution of ATRX loss of function to tumorigenesis through the loss of rDNA stability and suggests the therapeutic potential of targeting Pol I transcription in ALT cancers.This work was supported by
the Norwegian Cancer Society and the Research Council of Norway (to P.C.); an
Australia Research Council Future Fellowship award (to L.H.W.); National Health
and Medical Research Council Program Grant 1053792 (to R.B.P. and R.D.H.),
senior research fellowships (to R.B.P. and R.D.H.), and a project grant (to L.H.W.);
and a Cure Brain Cancer Foundation Australia project grant (to L.H.W. and H.P.J.V.)
Bub3 Is a Spindle Assembly Checkpoint Protein Regulating Chromosome Segregation during Mouse Oocyte Meiosis
In mitosis, the spindle assembly checkpoint (SAC) prevents anaphase onset until all chromosomes have been attached to the spindle microtubules and aligned correctly at the equatorial metaphase plate. The major checkpoint proteins in mitosis consist of mitotic arrest-deficient (Mad)1–3, budding uninhibited by benzimidazole (Bub)1, Bub3, and monopolar spindle 1(Mps1). During meiosis, for the formation of a haploid gamete, two consecutive rounds of chromosome segregation occur with only one round of DNA replication. To pull homologous chromosomes to opposite spindle poles during meiosis I, both sister kinetochores of a homologue must face toward the same pole which is very different from mitosis and meiosis II. As a core member of checkpoint proteins, the individual role of Bub3 in mammalian oocyte meiosis is unclear. In this study, using overexpression and RNA interference (RNAi) approaches, we analyzed the role of Bub3 in mouse oocyte meiosis. Our data showed that overexpressed Bub3 inhibited meiotic metaphase-anaphase transition by preventing homologous chromosome and sister chromatid segregations in meiosis I and II, respectively. Misaligned chromosomes, abnormal polar body and double polar bodies were observed in Bub3 knock-down oocytes, causing aneuploidy. Furthermore, through cold treatment combined with Bub3 overexpression, we found that overexpressed Bub3 affected the attachments of microtubules and kinetochores during metaphase-anaphase transition. We propose that as a member of SAC, Bub3 is required for regulation of both meiosis I and II, and is potentially involved in kinetochore-microtubule attachment in mammalian oocytes
Meiosis-Specific Loading of the Centromere-Specific Histone CENH3 in Arabidopsis thaliana
Centromere behavior is specialized in meiosis I, so that sister chromatids of homologous chromosomes are pulled toward the same side of the spindle (through kinetochore mono-orientation) and chromosome number is reduced. Factors required for mono-orientation have been identified in yeast. However, comparatively little is known about how meiotic centromere behavior is specialized in animals and plants that typically have large tandem repeat centromeres. Kinetochores are nucleated by the centromere-specific histone CENH3. Unlike conventional histone H3s, CENH3 is rapidly evolving, particularly in its N-terminal tail domain. Here we describe chimeric variants of CENH3 with alterations in the N-terminal tail that are specifically defective in meiosis. Arabidopsis thaliana cenh3 mutants expressing a GFP-tagged chimeric protein containing the H3 N-terminal tail and the CENH3 C-terminus (termed GFP-tailswap) are sterile because of random meiotic chromosome segregation. These defects result from the specific depletion of GFP-tailswap protein from meiotic kinetochores, which contrasts with its normal localization in mitotic cells. Loss of the GFP-tailswap CENH3 variant in meiosis affects recruitment of the essential kinetochore protein MIS12. Our findings suggest that CENH3 loading dynamics might be regulated differently in mitosis and meiosis. As further support for our hypothesis, we show that GFP-tailswap protein is recruited back to centromeres in a subset of pollen grains in GFP-tailswap once they resume haploid mitosis. Meiotic recruitment of the GFP-tailswap CENH3 variant is not restored by removal of the meiosis-specific cohesin subunit REC8. Our results reveal the existence of a specialized loading pathway for CENH3 during meiosis that is likely to involve the hypervariable N-terminal tail. Meiosis-specific CENH3 dynamics may play a role in modulating meiotic centromere behavior
A High-Throughput Platform for Lentiviral Overexpression Screening of the Human ORFeome
In response to the growing need for functional analysis of the human genome, we have developed a platform for high-throughput functional screening of genes overexpressed from lentiviral vectors. Protein-coding human open reading frames (ORFs) from the Mammalian Gene Collection were transferred into lentiviral expression vector using the highly efficient Gateway recombination cloning. Target ORFs were inserted into the vector downstream of a constitutive promoter and upstream of an IRES controlled GFP reporter, so that their transfection, transduction and expression could be monitored by fluorescence. The expression plasmids and viral packaging plasmids were combined and transfected into 293T cells to produce virus, which was then used to transduce the screening cell line. We have optimised the transfection and transduction procedures so that they can be performed using robotic liquid handling systems in arrayed 96-well microplate, one-gene-per-well format, without the need to concentrate the viral supernatant. Since lentiviruses can infect both dividing and non-dividing cells, this system can be used to overexpress human ORFs in a broad spectrum of experimental contexts. We tested the platform in a 1990 gene pilot screen for genes that can increase proliferation of the non-tumorigenic mammary epithelial cell line MCF-10A after removal of growth factors. Transduced cells were labelled with the nucleoside analogue 5-ethynyl-2′-deoxyuridine (EdU) to detect cells progressing through S phase. Hits were identified using high-content imaging and statistical analysis and confirmed with vectors using two different promoters (CMV and EF1α). The screen demonstrates the reliability, versatility and utility of our screening platform, and identifies novel cell cycle/proliferative activities for a number of genes
Tandemly repeated DNA families in the mouse genome
<p>Abstract</p> <p>Background</p> <p>Functional and morphological studies of tandem DNA repeats, that combine high portion of most genomes, are mostly limited due to the incomplete characterization of these genome elements. We report here a genome wide analysis of the large tandem repeats (TR) found in the mouse genome assemblies.</p> <p>Results</p> <p>Using a bioinformatics approach, we identified large TR with array size more than 3 kb in two mouse whole genome shotgun (WGS) assemblies. Large TR were classified based on sequence similarity, chromosome position, monomer length, array variability, and GC content; we identified four superfamilies, eight families, and 62 subfamilies - including 60 not previously described. 1) The superfamily of centromeric minor satellite is only found in the unassembled part of the reference genome. 2) The pericentromeric major satellite is the most abundant superfamily and reveals high order repeat structure. 3) Transposable elements related superfamily contains two families. 4) The superfamily of heterogeneous tandem repeats includes four families. One family is found only in the WGS, while two families represent tandem repeats with either single or multi locus location. Despite multi locus location, TRPC-21A-MM is placed into a separated family due to its abundance, strictly pericentromeric location, and resemblance to big human satellites.</p> <p>To confirm our data, we next performed <it>in situ </it>hybridization with three repeats from distinct families. TRPC-21A-MM probe hybridized to chromosomes 3 and 17, multi locus TR-22A-MM probe hybridized to ten chromosomes, and single locus TR-54B-MM probe hybridized with the long loops that emerge from chromosome ends. In addition to <it>in silico </it>predicted several extra-chromosomes were positive for TR by <it>in situ </it>analysis, potentially indicating inaccurate genome assembly of the heterochromatic genome regions.</p> <p>Conclusions</p> <p>Chromosome-specific TR had been predicted for mouse but no reliable cytogenetic probes were available before. We report new analysis that identified <it>in silico </it>and confirmed <it>in situ </it>3/17 chromosome-specific probe TRPC-21-MM. Thus, the new classification had proven to be useful tool for continuation of genome study, while annotated TR can be the valuable source of cytogenetic probes for chromosome recognition.</p
Aneuploidy and chromosomal instability in cancer: a jackpot to chaos
Genomic instability (GIN) is a hallmark of cancer cells that facilitates the acquisition of mutations conferring aggressive or drug-resistant phenotypes during cancer evolution. Chromosomal instability (CIN) is a form of GIN that involves frequent cytogenetic changes leading to changes in chromosome copy number (aneuploidy). While both CIN and aneuploidy are common characteristics of cancer cells, their roles in tumor initiation and progression are unclear. On the one hand, CIN and aneuploidy are known to provide genetic variation to allow cells to adapt in changing environments such as nutrient fluctuations and hypoxia. Patients with constitutive aneuploidies are more susceptible to certain types of cancers, suggesting that changes in chromosome copy number could positively contribute to cancer evolution. On the other hand, chromosomal imbalances have been observed to have detrimental effects on cellular fitness and might trigger cell cycle arrest or apoptosis. Furthermore, mouse models for CIN have led to conflicting results. Taken together these findings suggest that the relationship between CIN, aneuploidy and cancer is more complex than what was previously anticipated. Here we review what is known about this complex ménage à trois, discuss recent evidence suggesting that aneuploidy, CIN and GIN together promote a vicious cycle of genome chaos. Lastly, we propose a working hypothesis to reconcile the conflicting observations regarding the role of aneuploidy and CIN in tumorigenesis
- …