514 research outputs found

    Uplift of Central Mongolia Recorded in Vesicular Basalts

    Get PDF
    Epeirogenic histories of highland areas have confounded earth scientists for decades, as there are few sedimentary records of paleoelevation in eroding highlands. For example, mechanisms that have led to the high elevations of the Hangay Mountains in central Mongolia are not clear, nor is it well understood how the epeirogenic history of central Mongolia is connected to that of a broader region of high elevation that extends hundreds of kilometers to the north, east, and west. However, preserved basaltic lava flows record paleoelevation in the size distributions of vesicles at the tops and bottoms of flow units. As an initial step toward better understanding the tectonics of this part of Asia, we collected and analyzed samples from several basaltic lava flows from throughout the Hangay Mountains to use as a paleoaltimeter on the basis of lava flow vesicularity. Samples were dated and scanned with x-ray tomography to provide quantitative information regarding their internal vesicle size distributions. This yielded the pressure difference between the top and bottom of each flow for paleoelevation calculation. Results suggest that the Hangay Mountains experienced uplift of more than 1 km sometime during the past 9 m.yr. The magnitude of uplift of the Hangay, in addition to the composition of its lavas, the geomorphology of the region, its drainage pattern history, and other proxies, bears on possible mechanisms for uplift of this part of central Asia

    Magnetothermoelectric properties of Bi2Se3

    Get PDF
    We present a study of entropy transport in Bi2Se3 at low temperatures and high magnetic fields. In the zero-temperature limit, the magnitude of the Seebeck coefficient quantitatively tracks the Fermi temperature of the 3D Fermi surface at \Gamma-point as the carrier concentration changes by two orders of magnitude (1017^{17} to 1019^{19}cm3^{-3}). In high magnetic fields, the Nernst response displays giant quantum oscillations indicating that this feature is not exclusive to compensated semi-metals. A comprehensive analysis of the Landau Level spectrum firmly establishes a large gg-factor in this material and a substantial decrease of the Fermi energy with increasing magnetic field across the quantum limit. Thus, the presence of bulk carriers significantly affects the spectrum of the intensively debated surface states in Bi2Se3 and related materials.Comment: 10 pages, 9 figure

    Constructive role of non-adiabaticity for quantized charge pumping

    Full text link
    We investigate a recently developed scheme for quantized charge pumping based on single-parameter modulation. The device was realized in an AlGaAl-GaAs gated nanowire. It has been shown theoretically that non-adiabaticity is fundamentally required to realize single-parameter pumping, while in previous multi-parameter pumping schemes it caused unwanted and less controllable currents. In this paper we demonstrate experimentally the constructive and destructive role of non-adiabaticity by analysing the pumping current over a broad frequency range.Comment: Presented at ICPS 2010, July 25 - 30, Seoul, Kore

    Room-Temperature Quantum Hall Effect in Graphene

    Get PDF
    The quantum Hall effect (QHE), one example of a quantum phenomenon that occur on a truly macroscopic scale, has been attracting intense interest since its discovery in 1980 and has helped elucidate many important aspects of quantum physics. It has also led to the establishment of a new metrological standard, the resistance quantum. Disappointingly, however, the QHE could only have been observed at liquid-helium temperatures. Here, we show that in graphene - a single atomic layer of carbon - the QHE can reliably be measured even at room temperature, which is not only surprising and inspirational but also promises QHE resistance standards becoming available to a broader community, outside a few national institutions.Comment: Published in Science online 15 February 200

    Magnetoroton scattering by phonons in the fractional quantum Hall regime

    Full text link
    Motivated by recent phonon spectroscopy experiments in the fractional quantum Hall regime we consider processes in which thermally excited magnetoroton excitations are scattered by low energy phonons. We show that such scattering processes can never give rise to dissociation of magnetorotons into unbound charged quasiparticles as had been proposed previously. In addition we show that scattering of magnetorotons to longer wavelengths by phonon absorption is possible because of the shape of the magnetoroton dispersion curve and it is shown that there is a characteristic cross-over temperature above which the rate of energy transfer to the electron gas changes from an exponential (activated) to a power law dependence on the effective phonon temperature.Comment: LaTex document, 3 eps figures. submitted to Phys Rev

    Magnetic-field-induced singularities in spin dependent tunneling through InAs quantum dots

    Get PDF
    Current steps attributed to resonant tunneling through individual InAs quantum dots embedded in a GaAs-AlAs-GaAs tunneling device are investigated experimentally in magnetic fields up to 28 T. The steps evolve into strongly enhanced current peaks in high fields. This can be understood as a field-induced Fermi-edge singularity due to the Coulomb interaction between the tunneling electron on the quantum dot and the partly spin polarized Fermi sea in the Landau quantized three-dimensional emitter.Comment: 5 pages, 4 figure

    Generation of energy selective excitations in quantum Hall edge states

    Get PDF
    We operate an on-demand source of single electrons in high perpendicular magnetic fields up to 30T, corresponding to a filling factor below 1/3. The device extracts and emits single charges at a tunable energy from and to a two-dimensional electron gas, brought into well defined integer and fractional quantum Hall (QH) states. It can therefore be used for sensitive electrical transport studies, e.g. of excitations and relaxation processes in QH edge states

    Magnetoresistivity in a Tilted Magnetic Field in p-Si/SiGe/Si Heterostructures with an Anisotropic g-Factor: Part II

    Full text link
    The magnetoresistance components ρxx\rho_{xx} and ρxy\rho_{xy} were measured in two p-Si/SiGe/Si quantum wells that have an anisotropic g-factor in a tilted magnetic field as a function of temperature, field and tilt angle. Activation energy measurements demonstrate the existence of a ferromagnetic-paramagnetic (F-P) transition for a sample with a hole density of pp=2×1011\times10^{11}\,cm2^{-2}. This transition is due to crossing of the 0\uparrow and 1\downarrow Landau levels. However, in another sample, with pp=7.2×1010\times10^{10}\,cm2^{-2}, the 0\uparrow and 1\downarrow Landau levels coincide for angles Θ\Theta=0-70o^{\text{o}}. Only for Θ\Theta > 70o^{\text{o}} do the levels start to diverge which, in turn, results in the energy gap opening.Comment: 5 pages, 6 figure

    Non-linear electromagnetic response of graphene

    Full text link
    It is shown that the massless energy spectrum of electrons and holes in graphene leads to the strongly non-linear electromagnetic response of this system. We predict that the graphene layer, irradiated by electromagnetic waves, emits radiation at higher frequency harmonics and can work as a frequency multiplier. The operating frequency of the graphene frequency multiplier can lie in a broad range from microwaves to the infrared.Comment: 5 pages, 3 figure

    Dynamical scaling of the quantum Hall plateau transition

    Full text link
    Using different experimental techniques we examine the dynamical scaling of the quantum Hall plateau transition in a frequency range f = 0.1-55 GHz. We present a scheme that allows for a simultaneous scaling analysis of these experiments and all other data in literature. We observe a universal scaling function with an exponent kappa = 0.5 +/- 0.1, yielding a dynamical exponent z = 0.9 +/- 0.2.Comment: v2: Length shortened to fulfil Journal criteri
    corecore