595 research outputs found
Novel Characteristics of Valveless Pumping
This study investigates the occurrence of valveless pumping in a fluidfilled system consisting of two open tanks connected by an elastic tube. We show that directional flow can be achieved by introducing a periodic pinching applied at an asymmetrical location along the tube, and that the flow direction depends on the pumping frequency. We propose a relation between wave propagation velocity, tube length, and resonance frequencies associated with shifts in the pumping direction using numerical simulations. The eigenfrequencies of the system are estimated from the linearized system, and we show that these eigenfrequencies constitute the resonance frequencies and the horizontal slope frequencies of the system; 'horizontal slope frequency' being a new concept. A simple model is suggested, explaining the effect of the gravity driven part of the oscillation observed in response to the tank and tube diameter changes. Results are partly compared with experimental findings.Art. no. 22450
Three-dimensional numerical simulation of blood flow in mouse aortic arch around atherosclerotic plaques
Atherosclerosis is a progressive disease, involving the build-up of lipid streaks in artery walls, leading to plaques. Understanding the development of atherosclerosis and plaque vulnerability is critically important since plaque rupture can result in heart attack or stroke. Plaques can be divided into two distinct types: those likely to rupture (vulnerable) or less likely to rupture (stable). In the last decade, researchers have been interested in studying the influence of the mechanical effects (blood shear stress, pressure forces and structural stress) on the plaque formation, progression and rupture processes but no general agreement has been found. The purpose of the present work is to include more realistic conditions for the numerical calculations of the blood flow by implementing real geometries with plaques in the numerical model. Hemodynamical parameters are studied in both diseased and healthy configurations. The healthy configuration is obtained by removing numerically the plaques from three dimensional geometries obtained by micro-computed tomography. A new hemodynamical parameter is also introduced to relate the location of plaques to the characteristics of the flow in the healthy configuration
Local and global behaviour of nonlinear equations with natural growth terms
This paper concerns a study of the pointwise behaviour of positive solutions
to certain quasi-linear elliptic equations with natural growth terms, under
minimal regularity assumptions on the underlying coefficients. Our primary
results consist of optimal pointwise estimates for positive solutions of such
equations in terms of two local Wolff's potentials.Comment: In memory of Professor Nigel Kalto
Emerging communities of child-healthcare practice in the management of long-term conditions such as chronic kidney disease: Qualitative study of parents' accounts
Background: Parents of children and young people with long-term conditions who need to deliver clinical care to their child at home with remote support from hospital-based professionals, often search the internet for care-giving information. However, there is little evidence that the information available online was developed and evaluated with parents or that it acknowledges the communities of practice that exist as parents and healthcare professionals share responsibility for condition management. Methods. The data reported here are part of a wider study that developed and tested a condition-specific, online parent information and support application with children and young people with chronic-kidney disease, parents and professionals. Semi-structured interviews were conducted with 19 fathers and 24 mothers who had recently tested the novel application. Data were analysed using Framework Analysis and the Communities of Practice concept. Results: Evolving communities of child-healthcare practice were identified comprising three components and several sub components: (1) Experiencing (parents making sense of clinical tasks) through Normalising care, Normalising illness, Acceptance & action, Gaining strength from the affected child and Building relationships to formalise a routine; (2) Doing (Parents executing tasks according to their individual skills) illustrated by Developing coping strategies, Importance of parents' efficacy of care and Fear of the child's health failing; and (3) Belonging/Becoming (Parents defining task and group members' worth and creating a personal identity within the community) consisting of Information sharing, Negotiation with health professionals and Achieving expertise in care. Parents also recalled factors affecting the development of their respective communities of healthcare practice; these included Service transition, Poor parent social life, Psycho-social affects, Family chronic illness, Difficulty in learning new procedures, Shielding and avoidance, and Language and cultural barriers. Health care professionals will benefit from using the communities of child-healthcare practice model when they support parents of children with chronic kidney disease. Conclusions: Understanding some of the factors that may influence the development of communities of child-healthcare practice will help professionals to tailor information and support for parents learning to manage their child's healthcare. Our results are potentially transferrable to professionals managing the care of children and young people with other long-term conditions. © 2014 Carolan et al.; licensee BioMed Central Ltd
Evaluating multisite multiprofessional simulation training for a hyperacute stroke service using the behaviour change wheel
Background
Stroke is a clinical priority requiring early specialist assessment and treatment. A London (UK) stroke strategy was introduced in 2010, with Hyper Acute Stroke Units (HASUs) providing specialist and high dependency care. To support increased numbers of specialist staff, innovative multisite multiprofessional simulation training under a standard protocol-based curriculum took place across London.
This paper reports on an independent evaluation of the HASU training programme. The main aim was to evaluate mechanisms for behaviour change within the training design and delivery, and impact upon learners including potential transferability to the clinical environment.
Methods
The evaluation utilised the Behaviour Change Wheel framework. Procedures included: mapping training via the framework; examination of course material; direct and video-recorded observations of courses; pre-post course survey sheet; and follow up in-depth interviews with candidates and faculty.
Results
Patient management skills and trainee confidence were reportedly increased post-course (post-course median 6 [IQ range 5–6.33]; pre-course median 5 [IQ range 4.67–5.83]; z = 6.42, P <.001). Thematic analysis showed that facilitated ‘debrief’ was the key agent in supporting both clinical and non-clinical skills. Follow up interviews in practice showed some sustained effects such as enthusiasm for role, and a focus on situational awareness, prioritization and verbalising thoughts. Challenges in standardising a multi-centre course included provision for local context/identity.
Conclusions
Pan-London simulation training under the London Stroke Model had positive outcomes in terms of self-reported skills and motivation. These effects persisted to an extent in practice, where staff could recount applications of learning. The evaluation demonstrated that a multiple centre simulation programme congruent with clinical practice can provide valuable standard training opportunities that support patient care
Proton Transfer, Hydrogen Bonding, and Disorder: Nitrogen Near-Edge X-ray Absorption Fine Structure and X-ray Photoelectron Spectroscopy of Bipyridine-Acid Salts and Co-crystals
The sensitivity of near-edge X-ray absorption fine structure (NEXAFS) spectroscopy to Brønsted donation and the protonation state of nitrogen in the solid state is investigated through a series of multicomponent bipyridine–acid systems alongside X-ray photoelectron spectroscopy (XPS) data. A large shift to high energy occurs for the 1s → 1π* resonance in the nitrogen K-edge NEXAFS with proton transfer from the acid to the bipyridine base molecule and allows assignment as a salt (C═NH+), with the peak ratio providing the stoichiometry of the types of nitrogen species present. A corresponding binding energy shift for C═NH+ is observed in the nitrogen XPS, clearly identifying protonation and formation of a salt. The similar magnitude shifts observed with both techniques relative to the unprotonated nitrogen of co-crystals (C═N) suggest that the chemical state (initial-state) effects dominate. Results from both techniques reveal the sensitivity to identify proton transfer, hydrogen bond disorder, and even the potential to distinguish variations in hydrogen bond length to nitrogen
Emergency Department Escalation in Theory and Practice: A Mixed-Methods Study Using a Model of Organizational Resilience
Study objective
Escalation policies are used by emergency departments (EDs) when responding to an increase in demand (eg, a sudden inflow of patients) or a reduction in capacity (eg, a lack of beds to admit patients). The policies aim to maintain the ability to deliver patient care, without compromising safety, by modifying “normal” processes. The study objective is to examine escalation policies in theory and practice.
Methods
This was a mixed-method study involving a conceptual analysis of National Health Service escalation policies (n=12) and associated escalation actions (n=92), as well as a detailed ethnographic study of escalation in situ during a 16-month period in a large UK ED (n=30 observations).
Results
The conceptual analysis of National Health Service escalation policies found that their use requires the ability to dynamically reconfigure resources (staff and equipment), change work flow, and relocate patients. In practice, it was discovered that when the ED is under pressure, these prerequisites cannot always be attained. Instead, escalation processes were adapted to manage pressures informally. This adaptive need (“work as done”) was found to be incompletely specified in policies (“work as imagined”).
Conclusion
Formal escalation actions and their implementation in practice differed and varied in their effectiveness. Monitoring how escalation works in practice is essential in understanding whether and how escalation policies help to manage workload
Secreted or nonsecreted forms of acidic fibroblast growth factor produced by transfected epithelial cells influence cell morphology, motility, and invasive potential.
Recommended from our members
Implementing resilience engineering for healthcare quality improvement using the CARE model: a feasibility study protocol
BACKGROUND: Resilience engineering (RE) is an emerging perspective on safety in complex adaptive systems that emphasises how outcomes emerge from the complexity of the clinical environment. Complexity creates the need for flexible adaptation to achieve outcomes. RE focuses on understanding the nature of adaptations, learning from success and increasing adaptive capacity. Although the philosophy is clear, progress in applying the ideas to quality improvement has been slow. The aim of this study is to test the feasibility of translating RE concepts into practical methods to improve quality by designing, implementing and evaluating interventions based on RE theory. The CARE model operationalises the key concepts and their relationships to guide the empirical investigation.
METHODS: The settings are the Emergency Department and the Older Person's Unit in a large London teaching hospital. Phases 1 and 2 of our work, leading to the development of interventions to improve the quality of care, are described in this paper. Ethical approval has been granted for these phases. Phase 1 will use ethnographic methods, including observation of work practices and interviews with staff, to understand adaptations and outcomes. The findings will be used to collaboratively design, with clinical staff in interactive design workshops, interventions to improve the quality of care. The evaluation phase will be designed and submitted for ethical approval when the outcomes of phases 1 and 2 are known.
DISCUSSION: Study outcomes will be knowledge about the feasibility of applying RE to improve quality, the development of RE theory and a validated model of resilience in clinical work which can be used to guide other applications. Tools, methods and practical guidance for practitioners will also be produced, as well as specific knowledge of the potential effectiveness of the implemented interventions in emergency and older people's care. Further studies to test the application of RE at a larger scale will be required, including studies of other healthcare settings, organisational contexts and different interventions
Erythrocyte hemolysis and hemoglobin oxidation promote ferric chloride-induced vascular injury,” The
Abstract The release of redox-active iron and heme into the blood-stream is toxic to the vasculature, contributing to the development of vascular diseases. How iron induces endothelial injury remains ill defined. To investigate this, we developed a novel ex vivo perfusion chamber that enables direct analysis of the effects of FeCl3 on the vasculature. We demonstrate that FeCl3 treatment of isolated mouse aorta, perfused with whole blood, was associated with endothelial denudation, collagen exposure, and occlusive thrombus formation. Strikingly exposing vessels to FeCl3 alone, in the absence of perfused blood, was associated with only minor vascular injury. Whole blood fractionation studies revealed that FeCl3-induced vascular injury was red blood cell (erythrocyte)-dependent, requiring erythrocyte hemolysis and hemoglobin oxidation for endothelial denudation
- …
