4,954 research outputs found

    Direct solution of the hard pomeron problem for arbitrary conformal weight

    Get PDF
    A new method is applied to solve the Baxter equation for the one dimensional system of noncompact spins. Dynamics of such an ensemble is equivalent to that of a set of reggeized gluons exchanged in the high energy limit of QCD amplitudes. The technique offers more insight into the old calculation of the intercept of hard Pomeron, and provides new results in the odderon channel.Comment: Contribution to the ICHEP96 Conference, July 1996, Warsaw, Poland. LaTeX, 4 pages, 3 epsf figures, includes modified stwol.sty file. Some references were revise

    Hydrodynamic gradient expansion in gauge theory plasmas

    Full text link
    We utilize the fluid-gravity duality to investigate the large order behavior of hydrodynamic gradient expansion of the dynamics of a gauge theory plasma system. This corresponds to the inclusion of dissipative terms and transport coefficients of very high order. Using the dual gravity description, we calculate numerically the form of the stress tensor for a boost-invariant flow in a hydrodynamic expansion up to terms with 240 derivatives. We observe a factorial growth of gradient contributions at large orders, which indicates a zero radius of convergence of the hydrodynamic series. Furthermore, we identify the leading singularity in the Borel transform of the hydrodynamic energy density with the lowest nonhydrodynamic excitation corresponding to a `nonhydrodynamic' quasinormal mode on the gravity side.Comment: v2: 4+2 pages, 2 figures, title changed by journal, supplemental material incorporated into the preprint, energy density coefficients up to 240th order included in the submission (change in normalization with respect to v1), matches published versio

    Solution of the Odderon Problem

    Get PDF
    The intercept of the odderon trajectory is derived, by finding the spectrum of the second integral of motion of the three reggeon system in high energy QCD. When combined with earlier solution of the appropriate Baxter equation, this leads to the determination of the low lying states of that system. In particular, the energy of the lowest state gives the intercept of the odderon alpha_O(0)=1-0.2472 alpha_s N_c/pi.Comment: 11 pages, 2 Postscript figure

    On the supergravity description of boost invariant conformal plasma at strong coupling

    Full text link
    We study string theory duals of the expanding boost invariant conformal gauge theory plasmas at strong coupling. The dual supergravity background is constructed as an asymptotic late-time expansion, corresponding to equilibration of the gauge theory plasma. The absence of curvature singularities in the first few orders of the late-time expansion of the dual gravitational background unambiguously determines the equilibrium equation of the state, and the shear viscosity of the gauge theory plasma. While the absence of the leading pole singularities in the gravitational curvature invariants at the third order in late-time expansion determines the relaxation time of the plasma, the subleading logarithmic singularity can not be canceled within a supergravity approximation. Thus, a supergravity approximation to a dual description of the strongly coupled boost invariant expanding plasma is inconsistent. Nevertheless we find that the relaxation time determined from cancellation of pole singularities is quite robust.Comment: 26 pages, no figures; v2: references adde

    Coupling hydrodynamics to nonequilibrium degrees of freedom in strongly interacting quark-gluon plasma

    Full text link
    Relativistic hydrodynamics simulations of quark-gluon plasma play a pivotal role in our understanding of heavy ion collisions at RHIC and LHC. They are based on a phenomenological description due to Mueller, Israel, Stewart (MIS) and others, which incorporates viscous effects and ensures a well-posed initial value problem. Focusing on the case of conformal plasma we propose a generalization which includes, in addition, the dynamics of the least damped far-from-equilibrium degree of freedom found in strongly coupled plasmas through the AdS/CFT correspondence. We formulate new evolution equations for general flows and then test them in the case of N=4 super Yang-Mills plasma by comparing their solutions alongside solutions of MIS theory with numerical computations of isotropization and boost-invariant flow based on holography. In these tests the new equations reproduce the results of MIS theory when initialized close to the hydrodynamic stage of evolution, but give a more accurate description of the dynamics when initial conditions are set in the pre-equilibrium regime.Comment: Minor improvements; references adde

    Inflows and the restoration of the Salton Sea

    Get PDF

    The characteristics of thermalization of boost-invariant plasma from holography

    Full text link
    We report on the approach towards the hydrodynamic regime of boost-invariant N=4 super Yang-Mills plasma at strong coupling starting from various far-from-equilibrium states at tau=0. The results are obtained through numerical solution of Einstein's equations for the dual geometries, as described in detail in the companion article arXiv:1203.0755. Despite the very rich far-from-equilibrium evolution, we find surprising regularities in the form of clear correlations between initial entropy and total produced entropy, as well as between initial entropy and the temperature at thermalization, understood as the transition to a hydrodynamic description. For 29 different initial conditions that we consider, hydrodynamics turns out to be definitely applicable for proper times larger than 0.7 in units of inverse temperature at thermalization. We observe a sizable anisotropy in the energy-momentum tensor at thermalization, which is nevertheless entirely due to hydrodynamic effects. This suggests that effective thermalization in heavy ion collisions may occur significantly earlier than true thermalization.Comment: 4 pages, 5 figures; see also the companion article arXiv:1203.0755; v2: figure corrected (fixes problem with Acrobat); v3: various clarifications and additional data points added; v4: typo fixed, publishe

    Towards the lattice study of M-theory (II)

    Get PDF
    We present new results of the quenched simulations of the reduced D=4 supersymmetric Yang - Mills quantum mechanics for larger gauge groups SU(N), 2<N<9. The model, studied at finite temperature, reveals existence of the two distinct regions which may be precursors of a black hole and the elementary D0 branes phases of M-theory conjectured in the literature. Present results for higher groups confirm the picture found already for N=2. Similar behaviour is observed in the preliminary simulations for the D=6 and D=10 models.Comment: Talk presented at XIX International Symposium on Lattice Field Theory lattice2001(surfaces
    • …
    corecore