562 research outputs found

    Trembling cavities in the canonical approach

    Get PDF
    We present a canonical formalism facilitating investigations of the dynamical Casimir effect by means of a response theory approach. We consider a massless scalar field confined inside of an arbitaray domain G(t)G(t), which undergoes small displacements for a certain period of time. Under rather general conditions a formula for the number of created particles per mode is derived. The pertubative approach reveals the occurance of two generic processes contributing to the particle production: the squeezing of the vacuum by changing the shape and an acceleration effect due to motion af the boundaries. The method is applied to the configuration of moving mirror(s). Some properties as well as the relation to local Green function methods are discussed. PACS-numbers: 12.20; 42.50; 03.70.+k; 42.65.Vh Keywords: Dynamical Casimir effect; Moving mirrors; Cavity quantum field theory; Vibrating boundary

    Mapping Monte Carlo to Langevin dynamics: A Fokker-Planck approach

    Full text link
    We propose a general method of using the Fokker-Planck equation (FPE) to link the Monte-Carlo (MC) and the Langevin micromagnetic schemes. We derive the drift and disusion FPE terms corresponding to the MC method and show that it is analytically equivalent to the stochastic Landau-Lifshitz-Gilbert (LLG) equation of Langevin-based micromagnetics. Subsequent results such as the time quantification factor for the Metropolis MC method can be rigorously derived from this mapping equivalence. The validity of the mapping is shown by the close numerical convergence between the MC method and the LLG equation for the case of a single magnetic particle as well as interacting arrays of particles. We also found that our Metropolis MC is accurate for a large range of damping factors α\alpha, unlike previous time-quantified MC methods which break down at low α\alpha, where precessional motion dominates.Comment: 4 pages, 4 figures. Accepted for publication in Phys. Rev. Let

    New Experimental Limit on Photon Hidden-Sector Paraphoton Mixing

    Get PDF
    We report on the first results of a search for optical-wavelength photons mixing with hypothetical hidden-sector paraphotons in the mass range between 10^-5 and 10^-2 electron volts for a mixing parameter greater than 10^-7. This was a generation-regeneration experiment using the "light shining through a wall" technique in which regenerated photons are searched for downstream of an optical barrier that separates it from an upstream generation region. The new limits presented here are approximately three times more sensitive to this mixing than the best previous measurement. The present results indicate no evidence for photon-paraphoton mixing for the range of parameters investigated.Comment: 9 pages, 3 figure

    New Experimental limit on Optical Photon Coupling to Neutral, Scalar Bosons

    Full text link
    We report on the first results of a sensitive search for scalar coupling of photons to a light neutral boson in the mass range of approximately 1.0 milli-electron volts and coupling strength greater than 106^-6 GeV1^-1 using optical photons. This was a photon regeneration experiment using the "light shining through a wall" technique in which laser light was passed through a strong magnetic field upstream of an optical beam dump; regenerated laser light was then searched for downstream of a second magnetic field region optically shielded from the former. Our results show no evidence for scalar coupling in this region of parameter space.Comment: pdf-file, 10 pages, 4 figures, submitted to Physical Review Letter

    Exact enumeration of Hamiltonian circuits, walks, and chains in two and three dimensions

    Get PDF
    We present an algorithm for enumerating exactly the number of Hamiltonian chains on regular lattices in low dimensions. By definition, these are sets of k disjoint paths whose union visits each lattice vertex exactly once. The well-known Hamiltonian circuits and walks appear as the special cases k=0 and k=1 respectively. In two dimensions, we enumerate chains on L x L square lattices up to L=12, walks up to L=17, and circuits up to L=20. Some results for three dimensions are also given. Using our data we extract several quantities of physical interest

    What measurable zero point fluctuations can(not) tell us about dark energy

    Get PDF
    We show that laboratory experiments cannot measure the absolute value of dark energy. All known experiments rely on electromagnetic interactions. They are thus insensitive to particles and fields that interact only weakly with ordinary matter. In addition, Josephson junction experiments only measure differences in vacuum energy similar to Casimir force measurements. Gravity, however, couples to the absolute value. Finally we note that Casimir force measurements have tested zero point fluctuations up to energies of ~10 eV, well above the dark energy scale of ~0.01 eV. Hence, the proposed cut-off in the fluctuation spectrum is ruled out experimentally.Comment: 4 page

    Positronium Portal into Hidden Sector: A new Experiment to Search for Mirror Dark Matter

    Full text link
    The understanding of the origin of dark matter has great importance for cosmology and particle physics. Several interesting extensions of the standard model dealing with solution of this problem motivate the concept of hidden sectors consisting of SU(3)xSU(2)_LxU(1)_Y singlet fields. Among these models, the mirror matter model is certainly one of the most interesting. The model explains the origin of parity violation in weak interactions, it could also explain the baryon asymmetry of the Universe and provide a natural ground for the explanation of dark matter. The mirror matter could have a portal to our world through photon-mirror photon mixing (epsilon). This mixing would lead to orthopositronium (o-Ps) to mirror orthopositronium oscillations, the experimental signature of which is the apparently invisible decay of o-Ps. In this paper, we describe an experiment to search for the decay o-Ps -> invisible in vacuum by using a pulsed slow positron beam and a massive 4pi BGO crystal calorimeter. The developed high efficiency positron tagging system, the low calorimeter energy threshold and high hermiticity allow the expected sensitivity in mixing strength to be epsilon about 10^-9, which is more than one order of magnitude below the current Big Bang Nucleosynthesis limit and in a region of parameter space of great theoretical and phenomenological interest. The vacuum experiment with such sensitivity is particularly timely in light of the recent DAMA/LIBRA observations of the annual modulation signal consistent with a mirror type dark matter interpretation.Comment: 40 pages, 29 Figures 2 Tables v2: Ref. added, Fig. 29 and some text added to explain idea for backscattering e+ background suppression, corrected typos v3: minor corrections: Eq 2.1 corrected (6 lines-> 5 lines), Eq.2.17: two extra "-" signs remove

    Axions, their Relatives and Prospects for the Future

    Full text link
    The observation of a non-vanishing rotation of linear polarized laser light after passage through a strong magnetic field by the PVLAS collaboration has renewed the interest in light particles coupled to photons. Axions are a species of such particles that is theoretically well motivated. However, the relation between coupling and mass predicted by standard axion models conflicts with the PVLAS observation. Moreover, light particles with a coupling to photons of the strength required to explain PVLAS face trouble from astrophysical bounds. We discuss models that can avoid these bounds. Finally, we present some ideas to test these possible explanations of PVLAS experimentally.Comment: 11 pages, 4 figures. Contributed to the ``Third Symposium on Large TPCs for Low Energy Rare Event Detection'' in Paris, December 200

    Spin-Dependent Macroscopic Forces from New Particle Exchange

    Get PDF
    Long-range forces between macroscopic objects are mediated by light particles that interact with the electrons or nucleons, and include spin-dependent static components as well as spin- and velocity-dependent components. We parametrize the long-range potential between two fermions assuming rotational invariance, and find 16 different components. Applying this result to electrically neutral objects, we show that the macroscopic potential depends on 72 measurable parameters. We then derive the potential induced by the exchange of a new gauge boson or spinless particle, and compare the limits set by measurements of macroscopic forces to the astrophysical limits on the couplings of these particles.Comment: 37 page

    General Neutralino NLSPs at the Early LHC

    Full text link
    Gauge mediated supersymmetry breaking (GMSB) is a theoretically well-motivated framework with rich and varied collider phenomenology. In this paper, we study the Tevatron limits and LHC discovery potential for a wide class of GMSB scenarios in which the next-to-lightest superpartner (NLSP) is a promptly-decaying neutralino. These scenarios give rise to signatures involving hard photons, WW's, ZZ's, jets and/or higgses, plus missing energy. In order to characterize these signatures, we define a small number of minimal spectra, in the context of General Gauge Mediation, which are parameterized by the mass of the NLSP and the gluino. Using these minimal spectra, we determine the most promising discovery channels for general neutralino NLSPs. We find that the 2010 dataset can already cover new ground with strong production for all NLSP types. With the upcoming 2011-2012 dataset, we find that the LHC will also have sensitivity to direct electroweak production of neutralino NLSPs.Comment: 26 page
    corecore