250 research outputs found
Solar radiation forecasting using ad-hoc time series preprocessing and neural networks
In this paper, we present an application of neural networks in the renewable
energy domain. We have developed a methodology for the daily prediction of
global solar radiation on a horizontal surface. We use an ad-hoc time series
preprocessing and a Multi-Layer Perceptron (MLP) in order to predict solar
radiation at daily horizon. First results are promising with nRMSE < 21% and
RMSE < 998 Wh/m2. Our optimized MLP presents prediction similar to or even
better than conventional methods such as ARIMA techniques, Bayesian inference,
Markov chains and k-Nearest-Neighbors approximators. Moreover we found that our
data preprocessing approach can reduce significantly forecasting errors.Comment: 14 pages, 8 figures, 2009 International Conference on Intelligent
Computin
A Parallel General Purpose Multi-Objective Optimization Framework, with Application to Beam Dynamics
Particle accelerators are invaluable tools for research in the basic and
applied sciences, in fields such as materials science, chemistry, the
biosciences, particle physics, nuclear physics and medicine. The design,
commissioning, and operation of accelerator facilities is a non-trivial task,
due to the large number of control parameters and the complex interplay of
several conflicting design goals. We propose to tackle this problem by means of
multi-objective optimization algorithms which also facilitate a parallel
deployment. In order to compute solutions in a meaningful time frame a fast and
scalable software framework is required. In this paper, we present the
implementation of such a general-purpose framework for simulation-based
multi-objective optimization methods that allows the automatic investigation of
optimal sets of machine parameters. The implementation is based on a
master/slave paradigm, employing several masters that govern a set of slaves
executing simulations and performing optimization tasks. Using evolutionary
algorithms as the optimizer and OPAL as the forward solver, validation
experiments and results of multi-objective optimization problems in the domain
of beam dynamics are presented. The high charge beam line at the Argonne
Wakefield Accelerator Facility was used as the beam dynamics model. The 3D beam
size, transverse momentum, and energy spread were optimized
A Fast Parallel Poisson Solver on Irregular Domains Applied to Beam Dynamic Simulations
We discuss the scalable parallel solution of the Poisson equation within a
Particle-In-Cell (PIC) code for the simulation of electron beams in particle
accelerators of irregular shape. The problem is discretized by Finite
Differences. Depending on the treatment of the Dirichlet boundary the resulting
system of equations is symmetric or `mildly' nonsymmetric positive definite. In
all cases, the system is solved by the preconditioned conjugate gradient
algorithm with smoothed aggregation (SA) based algebraic multigrid (AMG)
preconditioning. We investigate variants of the implementation of SA-AMG that
lead to considerable improvements in the execution times. We demonstrate good
scalability of the solver on distributed memory parallel processor with up to
2048 processors. We also compare our SAAMG-PCG solver with an FFT-based solver
that is more commonly used for applications in beam dynamics
Quark mean field model with density dependent couplings for finite nuclei
The quark mean field model, which describes the nucleon using the constituent
quark model, is applied to investigate the properties of finite nuclei. The
couplings of the scalar and vector mesons with quarks are made density
dependent through direct coupling to the scalar field so as to reproduce the
relativistic Brueckner-Hartree-Fock results of nuclear matter. The present
model provides satisfactory results on the properties of spherical nuclei, and
predicts an increasing size of the nucleon as well as a reduction of the
nucleon mass in the nuclear environmentComment: 8 pages, REVTeX, 8 ps figures, accepted for publication in Phys. Rev.
Nuclei, Superheavy Nuclei and Hypermatter in a chiral SU(3)-Modell
A model based on chiral SU(3)-symmetry in nonlinear realisation is used for
the investigation of nuclei, superheavy nuclei, hypernuclei and multistrange
nuclear objects (so called MEMOs). The model works very well in the case of
nuclei and hypernuclei with one Lambda-particle and rules out MEMOs. Basic
observables which are known for nuclei and hypernuclei are reproduced
satisfactorily. The model predicts Z=120 and N=172, 184 and 198 as the next
shell closures in the region of superheavy nuclei. The calculations have been
performed in self-consistent relativistic mean field approximation assuming
spherical symmetry. The parameters were adapted to known nuclei.Comment: 19 pages, 11 figure
Satellite derived irradiance : clear sky and all-weather models validation on Skukuza data
Paper presented to the 3rd Southern African Solar Energy Conference, South Africa, 11-13 May, 2015.Downward short wave incoming irradiances play a key role in the radiation budget at the earth surface. The monitoring of this parameter is essential for the understanding of the basic mechanisms involved in climate change, such as the greenhouse effect, the global dimming, the change in cloud cover and precipitations, etc. Unfortunately, the density of the ground measurement network is insufficient, especially on continents like Africa, or countries in the Near East. To circumvent this lack of measured data, the meteorological satellites are of great help and models converting the satellite images into the different radiation components become increasingly performing. If these converting models are well validated over the United States and Europe, it is not the case over the African continent. A previous study [1] conducted on data covering the year 2006 over 12 sites situated in Western Africa at latitudes from 17°N to 5°S show that the global irradiance retrieved from satellite images is highly dependent on the knowledge of the aerosol optical depth (aod) and the water vapor content of the atmosphere (w). The satellite derived irradiance components are obtained from two inputs: the clear sky irradiance obtained from the atmospheric parameters (aod and w), and the cloud properties obtained from the Meteosat images. In Skukuza, aerosol optical depth is acquired within the aeronet network simultaneously with the global irradiance from 2004 to 2007. The state of the art satellite irradiance deriving algorithms use as input the aerosol optical depth from the MACC-II project (Monitoring Atmosphere Composition and Climate [2, 3]) on a daily basis. The present paper analyses the performance of two clear sky models routinely used in the state of the art satellite algorithms, as well as a validation of the irradiance obtained from the satellite images. The first results show that the clear sky models stays within 4% for the global component acquired in Skukuza; the all-weather estimated irradiance is derived with a low bias, and a standard deviation of 8%, 24% and 32% for respectively the monthly, daily and hourly values.cf201
Neutron star properties with relativistic equations of state
We study the properties of neutron stars adopting relativistic equations of
state of neutron star matter, calculated in the framework of the relativistic
Brueckner-Hartree-Fock approximation for electrically charge neutral neutron
star matter in beta-equilibrium. For higher densities more baryons (hyperons
etc.) are included by means of the relativistic Hartree- or Hartree-Fock
approximation. The special features of the different approximations and
compositions are discussed in detail. Besides standard neutron star properties
special emphasis is put on the limiting periods of neutron stars, for which the
Kepler criterion and gravitation-reaction instabilities are considered.
Furthermore the cooling behaviour of neutron stars is investigated, too. For
comparison we give also the outcome for some nonrelativistic equations of
state.Comment: 43 pages, 22 ps-figures, to be published in the International Journal
of Modern Physics
Application of the density dependent hadron field theory to neutron star matter
The density dependent hadron field (DDRH) theory, previously applied to
isospin nuclei and hypernuclei is used to describe -stable matter and
neutron stars under consideration of the complete baryon octet. The
meson-hyperon vertices are derived from Dirac-Brueckner calculations of nuclear
matter and extended to hyperons. We examine properties of density dependent
interactions derived from the Bonn A and from the Groningen NN potential as
well as phenomenological interactions. The consistent treatment of the density
dependence introduces rearrangement terms in the expression for the baryon
chemical potential. This leads to a more complex condition for the
-equilibrium compared to standard relativistic mean field (RMF)
approaches. We find a strong dependence of the equation of state and the
particle distribution on the choice of the vertex density dependence. Results
for neutron star masses and radii are presented. We find a good agreement with
other models for the maximum mass. Radii are smaller compared to RMF models and
indicate a closer agreement with results of non-relativistic Brueckner
calculations.Comment: 28 pages, 11 figure
Ethnic inequalities and pathways to care in psychosis in England: a systematic review and meta-analysis
© The Author(s). 2018Background: As part of a national programme to tackle ethnic inequalities, we conducted a systematic review and meta-analysis of research on ethnic inequalities in pathways to care for adults with psychosis living in England and/or Wales. Methods: Nine databases were searched from inception to 03.07.17 for previous systematic reviews, including forward and backward citation tracking and a PROSPERO search to identify ongoing reviews. We then carried forward relevant primary studies from included reviews (with the latest meta-analyses reporting on research up to 2012), supplemented by a search on 18.10.17 in MEDLINE, Embase, PsycINFO and CINAHL for primary studies between 2012 and 2017 that had not been covered by previous meta-analyses. Results: Forty studies, all conducted in England, were included for our updated meta-analyses on pathways to care. Relative to the White reference group, elevated rates of civil detentions were found for Black Caribbean (OR = 3.43, 95% CI = 2.68 to 4.40, n = 18), Black African (OR = 3.11, 95% CI = 2.40 to 4.02, n = 6), and South Asian patients (OR = 1.50, 95% CI 1.07 to 2.12, n = 10). Analyses of each Mental Health Act section revealed significantly higher rates for Black people under (civil) Section 2 (OR = 1.53, 95% CI = 1.11 to 2.11, n = 3). Rates in repeat admissions were significantly higher than in first admission for South Asian patients (between-group difference p < 0.01). Some ethnic groups had more police contact (Black African OR = 3.60, 95% CI = 2.15 to 6.05, n = 2; Black Caribbean OR = 2.64, 95% CI = 1.88 to 3.72, n = 8) and criminal justice system involvement (Black Caribbean OR = 2.76, 95% CI = 2.02 to 3.78, n = 5; Black African OR = 1.92, 95% CI = 1.32 to 2.78, n = 3). The White Other patients also showed greater police and criminal justice system involvement than White British patients (OR = 1.49, 95% CI = 1.03 to 2.15, n = 4). General practitioner involvement was less likely for Black than the White reference group. No significant variations over time were found across all the main outcomes. Conclusions: Our updated meta-analyses reveal persisting but not significantly worsening patterns of ethnic inequalities in pathways to psychiatric care, particularly affecting Black groups. This provides a comprehensive evidence base from which to inform policy and practice amidst a prospective Mental Health Act reform. Trial registration: CRD42017071663Peer reviewedFinal Published versio
Quantitative magnetic resonance mapping of the myelin bilayer reflects pathology in multiple sclerosis brain tissue
Multiple sclerosis (MS) is a neuroinflammatory disease characterized by loss of myelin (demyelination) and, to a certain extent, subsequent myelin repair (remyelination). To better understand the pathomechanisms underlying de- and remyelination and to monitor the efficacy of treatments aimed at regenerating myelin, techniques offering noninvasive visualizations of myelin are warranted. Magnetic resonance (MR) imaging has long been at the forefront of efforts to visualize myelin, but it has only recently become feasible to access the rapidly decaying resonance signals stemming from the myelin lipid-protein bilayer itself. Here, we show that direct MR mapping of the bilayer yields highly specific myelin maps in brain tissue from patients with MS. Furthermore, examination of the bilayer signal behavior is found to reveal pathological alterations in normal-appearing white and gray matter. These results indicate promise for in vivo implementations of the myelin bilayer mapping technique, with prospective applications in basic research, diagnostics, disease monitoring, and drug development
- …
