1,814 research outputs found
Thin film superconducting quantum interferometer with ultralow inductance
A simple method has been developed for manufacturing a thin film
superconducting quantum interferometer (SQI) with ultralow inductance (~10^-13
H). Current-voltage and voltage-field characteristics of the SQI are presented.
The basic design equations are obtained and confirmed experimentally. The SQI
has been used for the first time to determine the penetration depth of a
magnetic field into a film of 50% In-50% Sn alloy.Comment: 5 pages, 5 gigure
Fatigue analysis-based numerical design of stamping tools made of cast iron
This work concerns stress and fatigue analysis of stamping tools made of cast iron with an essentially pearlitic matrix and containing foundry defects. Our approach consists at first, in coupling the stamping numerical processing simulations and structure analysis in order to improve the tool stiffness geometry for minimizing the stress state and optimizing their fatigue lifetime. The method consists in simulating the stamping process by considering the tool as a perfect rigid body. The estimated contact pressure is then used as boundary condition for FEM structure loading analysis of the tool. The result of this analysis is compared with the critical stress limit depending on the automotive model. The acceptance of this test allows calculating the fatigue lifetime of the critical zone by using the S–N curve of corresponding load ratio. If the prescribed tool life requirements are not satisfied, then the critical region of the tool is redesigned and the whole simulation procedures are reactivated. This method is applied for a cast iron EN-GJS-600-3. The stress-failure (S–N) curves for this material is determined at room temperature under push pull loading with different load ratios R0σmin/σmax0−2, R0−1 and R00.1. The effects of the foundry defects are determined by SEM observations of crack initiation sites. Their presence in tested specimens is associated with a reduction of fatigue lifetime by a factor of 2. However, the effect of the load ratio is more important
Kneadings, Symbolic Dynamics and Painting Lorenz Chaos. A Tutorial
A new computational technique based on the symbolic description utilizing
kneading invariants is proposed and verified for explorations of dynamical and
parametric chaos in a few exemplary systems with the Lorenz attractor. The
technique allows for uncovering the stunning complexity and universality of
bi-parametric structures and detect their organizing centers - codimension-two
T-points and separating saddles in the kneading-based scans of the iconic
Lorenz equation from hydrodynamics, a normal model from mathematics, and a
laser model from nonlinear optics.Comment: Journal of Bifurcations and Chaos, 201
Geometric observation for the Bures fidelity between two states of a qubit
In this Brief Report, we present a geometric observation for the Bures
fidelity between two states of a qubit.Comment: 4 pages, 1 figure, RevTex, Accepted by Phys. Rev. 
Spin Fidelity for Three-qubit Greenberger-Horne-Zeilinger and W States Under Lorentz Transformations
Constructing the reduced density matrix for a system of three massive
spin particles described by a wave packet with Gaussian momentum
distribution and a spin part in the form of GHZ or W state, the fidelity for
the spin part of the system is investigated from the viewpoint of moving
observers in the jargon of special relativity. Using a numerical approach, it
turns out that by increasing the boost speed, the spin fidelity decreases and
reaches to a non-zero asymptotic value that depends on the momentum
distribution and the amount of momentum entanglement.Comment: 12pages, 2 figure
'Return to equilibrium' for weakly coupled quantum systems: a simple polymer expansion
Recently, several authors studied small quantum systems weakly coupled to
free boson or fermion fields at positive temperature. All the approaches we are
aware of employ complex deformations of Liouvillians or Mourre theory (the
infinitesimal version of the former). We present an approach based on polymer
expansions of statistical mechanics. Despite the fact that our approach is
elementary, our results are slightly sharper than those contained in the
literature up to now. We show that, whenever the small quantum system is known
to admit a Markov approximation (Pauli master equation \emph{aka} Lindblad
equation) in the weak coupling limit, and the Markov approximation is
exponentially mixing, then the weakly coupled system approaches a unique
invariant state that is perturbatively close to its Markov approximation.Comment: 23 pages, v2-->v3: Revised version: The explanatory section 1.7 has
  changed and Section 3.2 has been made more explici
Frictional drag between quantum wells mediated by phonon exchange
We use the Kubo formalism to evaluate the contribution of acoustic phonon
exchange to the frictional drag between nearby two-dimensional electron
systems. In the case of free phonons, we find a divergent drag rate
(). However,  becomes finite when phonon
scattering from either lattice imperfections or electronic excitations is
accounted for. In the case of GaAs quantum wells, we find that for a phonon
mean free path  smaller than a critical value, imperfection
scattering dominates and the drag rate varies as  over many
orders of magnitude of the layer separation . When  exceeds the
critical value, the drag rate is dominated by coupling through an
electron-phonon collective mode localized in the vicinity of the electron
layers. We argue that the coupled electron-phonon mode may be observable for
realistic parameters. Our theory is in good agreement with experimental results
for the temperature, density, and -dependence of the drag rate.Comment: 45 pages, LaTeX, 8 postscript file figure
Variation in nucleotide homology obtained by amplification, cloning and sequencing of complete S1 gene from field samples of avian infectious bronchitis virus.
Projeto/Plano de Ação: 02.09.01.030
- …
