265 research outputs found

    Multi-sulfonated ligands on gold nanoparticles as virucidal antiviral for Dengue virus

    Get PDF
    Dengue virus (DENV) causes 390 million infections per year. Infections can be asymptomatic or range from mild fever to severe haemorrhagic fever and shock syndrome. Currently, no effective antivirals or safe universal vaccine is available. In the present work we tested different gold nanoparticles (AuNP) coated with ligands ω-terminated with sugars bearing multiple sulfonate groups. We aimed to identify compounds with antiviral properties due to irreversible (virucidal) rather than reversible (virustatic) inhibition. The ligands varied in length, in number of sulfonated groups as well as their spatial orientation induced by the sugar head groups. We identified two candidates, a glucose- and a lactose-based ligand showing a low EC50 (effective concentration that inhibit 50% of the viral activity) for DENV-2 inhibition, moderate toxicity and a virucidal effect in hepatocytes with titre reduction of Median Tissue Culture Infectious Dose log10TCID50 2.5 and 3.1. Molecular docking simulations complemented the experimental findings suggesting a molecular rationale behind the binding between sulfonated head groups and DENV-2 envelope protein

    Differential Consumption of Four Aphid Species by Four Lady Beetle Species

    Get PDF
    The acceptability of four different aphid species Macrosiphum albifrons (Essig), Macrosiphum euphorbiae (Thomas), Macrosiphum pseudorosae Patch, and Myzus persicae (Sulzer) (Hemiptera: Aphididae), as prey for four lady beetle species, one native species Coccinella trifasciata L, and three non-native Coccinella septempunctata L, Harmonia axyridis Pallas, Propylea quatuordecimpunctata L (Coleoptera: Coccinellidae) were tested in the laboratory. The relative field abundance of adults of the same lady beetle species on host vegetation, Lupinus polyphyllus Lindley (Fabales: Fabaceae), Solanum tuberosum L (Solanales: Solanaceae), and Rosa multiflora Thunberg (Rosales: Rosaceae), both with and without aphids present was also observed. In the laboratory, H. axyridis generally consumed the most aphids, while P. quatuordecimpunctata consumed the fewest. The exception was P. quatuordecimpunctata, which consumed a greater number of M. albifrons nymphs, and C. trifasciata, which consumed a greater number of M. albifrons nymphs and adults, compared with the other two beetle species. Lady beetles consumed fewer M. albifrons compared with the other three aphid species, likely because of deterrent compounds sequestered by this species from its host plant. In the field, P. quatuordecimpunctata was the most abundant species found on L. polyphyllus and S. tuberosum

    Cytochrome P450-mediated metabolism of N-(2-methoxyphenyl)-hydroxylamine, a human metabolite of the environmental pollutants and carcinogens o-anisidine and o-nitroanisole

    Get PDF
    N-(2-methoxyphenyl)hydroxylamine is a human metabolite of the industrial and environmental pollutants and bladder carcinogens 2-methoxyaniline (o-anisidine) and 2-methoxynitrobenzene (o-nitroanisole). Here, we investigated the ability of hepatic microsomes from rat and rabbit to metabolize this reactive compound. We found that N-(2-methoxyphenyl)hydroxylamine is metabolized by microsomes of both species mainly to o-aminophenol and a parent carcinogen, o-anisidine, whereas 2-methoxynitrosobenzene (o-nitrosoanisole) is formed as a minor metabolite. Another N-(2-methoxyphenyl)hydroxylamine metabolite, the exact structure of which has not been identified as yet, was generated by hepatic microsomes of rabbits, but its formation by those of rats was negligible. To evaluate the role of rat hepatic microsomal cytochromes P450 (CYP) in N-(2-methoxyphenyl)hydroxylamine metabolism, we investigated the modulation of its metabolism by specific inducers of these enzymes. The results of this study show that rat hepatic CYPs of a 1A subfamily and, to a lesser extent those of a 2B subfamily, catalyze N-(2-methoxyphenyl)hydroxylamine conversion to form both its reductive metabolite, o-anisidine, and o-aminophenol. CYP2E1 is the most efficient enzyme catalyzing conversion of N-(2-methoxyphenyl)hydroxylamine to o-aminophenol

    PP2A/B55 and Fcp1 regulate Greatwall and Ensa desphorylation during mitotic exit

    Get PDF
    Entry into mitosis is triggered by activation of Cdk1 and inactivation of its counteracting phosphatase PP2A/B55. Greatwall kinase inactivates PP2A/B55 via its substrates Ensa and ARPP19. Both Greatwall and Ensa/ARPP19 are regulated by phosphorylation, but the dynamic regulation of Greatwall activity and the phosphatases that control Greatwall kinase and its substrates are poorly understood. To address these questions we applied a combination of mathematical modelling and experiments using phospho-specific antibodies to monitor Greatwall, Ensa/ARPP19 and Cdk substrate phosphorylation during mitotic entry and exit. We demonstrate that PP2A/B55 is required for Gwl dephosphorylation at the essential Cdk site Thr194. Ensa/ARPP19 dephosphorylation is mediated by the RNA Polymerase II carboxy terminal domain phosphatase Fcp1. Surprisingly, neither Fcp1 nor PP2A appear to essential to dephosphorylate the bulk of mitotic Cdk1 substrates following Cdk1 inhibition. Taken together our results suggest a hierarchy of phosphatases coordinating Greatwall, Ensa/ARPP19 and Cdk substrate dephosphorylation during mitotic exit

    Experimental approaches to evaluate activities of cytochromes P450 3A

    Get PDF
    Cytochrome P450 (CYP) is a heme protein oxidizing various xenobiotics, as well as endogenous substrates. Understanding which CYP enzymes are involved in metabolic activation and/or detoxication of different compounds is important in the assessment of an individual's susceptibility to the toxic action of these substances. Therefore, investigation which of several in vitro experimental models are appropriate to mimic metabolism of xenobiotics in organisms is the major challenge for research of many laboratories. The aim of this study was to evaluate the efficiency of different in vitro systems containing individual enzymes of the mixed-function monooxygenase system to oxidize two model substrates of CYP3A enzymes, exogenous and endogenous compounds, α-naphtoflavone (α-NF) and testosterone, respectively. Several different enzymatic systems containing CYP3A enzymes were utilized in the study: (i) human hepatic microsomes rich in CYP3A4, (ii) hepatic microsomes of rabbits treated with a CYP3A6 inducer, rifampicine, (iii) microsomes of Baculovirus transfected insect cells containing recombinant human CYP3A4 and NADPH:CYP reductase with or without cytochrome b5 (Supersomes™), (iv) membranes isolated from of Escherichia coli, containing recombinant human CYP3A4 and cytochrome b5, and (v) purified human CYP3A4 or rabbit CYP3A6 reconstituted with NADPH:CYP reductase with or without cytochrome b5 in liposomes. The most efficient systems oxidizing both compounds were Supersomes™ containing human CYP3A4 and cytochrome b5. The results presented in this study demonstrate the suitability of the supersomal CYP3A4 systems for studies investigating oxidation of testosterone and α-NF in vitro

    Assessing the ecological risk posed by a recently established invasive alien predator: Harmonia axyridis as a case study

    Get PDF
    Invasive alien predators are a serious threat to biodiversity worldwide. However, there is no generic method for assessing which local species are most at risk following the invasion of a new predator. The harlequin ladybird, Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae), is an alien in Europe and many other parts of the world where it affects other species of ladybirds through competition for food and intra-guild predation (IGP). Here, we describe a method developed to assess which European ladybird species are most at risk following the invasion of H. axyridis. The three components of the risk assessment are: the likelihood that the assessed native species encounters H. axyridis in the field, the hazard of competition for food, and the IGP hazard. Thirty native European ladybird species were assessed through data obtained from field observations, laboratory experiments and literature reviews. The species that are considered most at risk are found on deciduous trees, have immature stages which are highly vulnerable to IGP by H. axyridis, and are primarily aphidophagous. These species should be the focus of specific studies and possibly conservation actions. The risk assessment method proposed here could be applied to other alien predators which are considered a threat to native species through competition and predation

    Laboratory toxicity studies demonstrate no adverse effects of Cry1Ab and Cry3Bb1 to larvae of Adalia bipunctata (Coleoptera: Coccinellidae): the importance of study design

    Get PDF
    Scientific studies are frequently used to support policy decisions related to transgenic crops. Schmidt et al., Arch Environ Contam Toxicol 56:221–228 (2009) recently reported that Cry1Ab and Cry3Bb were toxic to larvae of Adalia bipunctata in direct feeding studies. This study was quoted, among others, to justify the ban of Bt maize (MON 810) in Germany. The study has subsequently been criticized because of methodological shortcomings that make it questionable whether the observed effects were due to direct toxicity of the two Cry proteins. We therefore conducted tritrophic studies assessing whether an effect of the two proteins on A. bipunctata could be detected under more realistic routes of exposure. Spider mites that had fed on Bt maize (events MON810 and MON88017) were used as carriers to expose young A. bipunctata larvae to high doses of biologically active Cry1Ab and Cry3Bb1. Ingestion of the two Cry proteins by A. bipunctata did not affect larval mortality, weight, or development time. These results were confirmed in a subsequent experiment in which A. bipunctata were directly fed with a sucrose solution containing dissolved purified proteins at concentrations approximately 10 times higher than measured in Bt maize-fed spider mites. Hence, our study does not provide any evidence that larvae of A. bipunctata are sensitive to Cry1Ab and Cry3Bb1 or that Bt maize expressing these proteins would adversely affect this predator. The results suggest that the apparent harmful effects of Cry1Ab and Cry3Bb1 reported by Schmidt et al., Arch Environ Contam Toxicol 56:221–228 (2009) were artifacts of poor study design and procedures. It is thus important that decision-makers evaluate the quality of individual scientific studies and do not view all as equally rigorous and relevant
    corecore