5,606 research outputs found

    A procedural method for the efficient implementation of full-custom VLSI designs

    Get PDF
    An imbedded language system for the layout of very large scale integration (VLSI) circuits is examined. It is shown that through the judicious use of this system, a large variety of circuits can be designed with circuit density and performance comparable to traditional full-custom design methods, but with design costs more comparable to semi-custom design methods. The high performance of this methodology is attributable to the flexibility of procedural descriptions of VLSI layouts and to a number of automatic and semi-automatic tools within the system

    CHEM 2217

    Get PDF

    Unmanned Aerial Systems: Research, Development, Education & Training at Embry-Riddle Aeronautical University

    Get PDF
    With technological breakthroughs in miniaturized aircraft-related components, including but not limited to communications, computer systems and sensors, state-of-the-art unmanned aerial systems (UAS) have become a reality. This fast-growing industry is anticipating and responding to a myriad of societal applications that will provide new and more cost-effective solutions that previous technologies could not, or will replace activities that involved humans in flight with associated risks. Embry-Riddle Aeronautical University has a long history of aviation-related research and education, and is heavily engaged in UAS activities. This document provides a summary of these activities, and is divided into two parts. The first part provides a brief summary of each of the various activities, while the second part lists the faculty associated with those activities. Within the first part of this document we have separated UAS activities into two broad areas: Engineering and Applications. Each of these broad areas is then further broken down into six sub-areas, which are listed in the Table of Contents. The second part lists the faculty, sorted by campus (Daytona Beach-D, Prescott-P and Worldwide-W) associated with the UAS activities. The UAS activities and the corresponding faculty are cross-referenced. We have chosen to provide very short summaries of the UAS activities rather than lengthy descriptions. If more information is desired, please contact me directly, or visit our research website (https://erau.edu/research), or contact the appropriate faculty member using their e-mail address provided at the end of this document

    The Roundtable of Scientific Communication: From Classroom to Course Creation, Back to Classroom and Beyond

    Get PDF
    This research encompasses many aspects of chemical education research including curriculum and pedagogical changes to the freshman and sophomore courses. Curriculum changes included the addition of recitations to the general chemistry and organic chemistry lectures and the creation of four new classes, CHEM 1001, 1002, 3091, and 3092. The addition of recitations was not limited to but was focused on improving DFW rates for these courses. CHEM 3091 and 3092 are chemistry internship and undergraduate teaching assistant classes. These courses were necessary to offer outside internship opportunities and training for undergraduate teaching assistants, respectively. CHEM 1001 and 1002 are chemistry classes for nonscience majors. These courses were created to attempt to increase the number of nonscience major students choosing chemistry to complete their science requirement. CHEM 1001 and 1002 were courses not offered at any other university and required that the course materials and textbooks for these classes to be created from scratch without any foundation from other courses. An unforeseen consequence of the creation of these courses was the need to improve scientific communication between scientists and non-scientists and even scientist and scientist. Pedagogical work included a video intensive lecture style (VILS) for disseminating the material in the newly created CHEM 1001 and 1002 courses. For general chemistry and organic chemistry lecture, the major change was the addition of required recitation sessions for these courses. Further pedagogical changes to the organic lecture included introduction of video lectures, implementation of active learning in the lecture and graded, online homework
    corecore