
TDA Progress Report 42-91 July-September 1987

A Procedural Method for the Efficient Implementation
of Full-Custom VLSI Designs

P. Belk
Flight Computer Systems and Technology Section

N. Hickey
NDH Consulting

An imbedded language system for the hyout of VLSI circuits is examined. It is shown
that through the judicious use of this system, a large variety of circuits can be designed
with circuit density and performance comparable to traditional full-custom design meth-
ods, but with design costs more comparable to semi-custom design methods, The high
performance of this methodology is attributable to the flexibility of procedural descrip-
tions of VLSI layouts and to a number of automatic and semi-automatic tools within the
system.

1. Introduction
Traditionally, full-custom integrated circuit design has been

used in those situations where high performance or small size
was of critical necessity. The designer has been forced to accept
the increased development time and susceptibility to error
over the so-called semi-custom approaches. This article is the
first in a series of articles which describe a full-custom design
methodology that supports many of the structured concepts
inherent in the semi-custom approaches, allowing most of
the benefits of a full-custom design to be realized while avoid-
ing the penalties normally associated with full-custom design.

In a full-custom design, the designer must specify in great
detail the actual cell geometries, cell placement, and cell rout-
ing of the chip. In exchange, the designer is able to control the
system performance parameters of speed, power consumption,
and size. In a semi-custom approach, the designer must select

from predefined cell geometries, and the cell placement and
routing are constrained by the automatic placement and rout-
ing procedures associated with the system. In many designs,
there is only a small portion of the chip which is critical to the
performance. In others, there are a few unusual functions
which are not normally found in standard systems. In still
others, the functions exist but are too large or slow or limited
to be used in design. Hence, what is needed is a system which
will provide the automatic capabilities of the semi-custom
approach but which will also provide easy access to the special
leaf cells, special placement, and special routing procedures
which are needed in a given design.

In addition to the functional differences between this ap-
proach and the traditional methods, there is a philosophical
one. The apparent goal of many traditional systems is to elimi-
nate the designer from the design cycle. Under the approach
described in this article, this is not necessarily considered a

235

https://ntrs.nasa.gov/search.jsp?R=19880003319 2020-03-20T09:16:36+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42834368?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

worthwhile goal. Rather, the goal of the system is t o maximize
the efficiency of the designer by allowing the utilization of
automatic tools where appropriate, procedural tools where
appropriate, and manual tools where appropriate and t o make
it easy to determine when each is needed. Furthermore, a
single, well-defined interface between all the tools allows the
designer t o use his intuition and intellect on those design
aspects requiring the greatest design power. The interface t o
the system is based on the premise that the intuition and skill
of the designer are valuable resources.

The central element of the layout system described is an
imbedded language called Art. Art is compatible with a set of
other tools created as part of the system, including editors,
plotting programs, and design rule checkers. The methodology
described in this article presumes that most of the chip layout
task will be accomplished by using Art t o perform placement
and routing between pre-existing low-level cells. Although this
is a very efficient method of implementing a large variety of
very complex chip designs, it should be emphasized that there
is n o element in this system which mandates the use of any
feature of an imbedded language for any part of the design.
Thus, the designer may choose to use only Art’s predefined
placement and routing capabilities, to define more advanced
or specialized placement and/or routing capabilities in Art, or
t o bypass Art entirely in favor of implementing the entire
design in the graphics editor or other layout tools.

The low-level cells used by Art may be created b y other
components in the system, or imported. Imported cells may
come from existing standard cell libraries, external cell gener-
ators, or other types of external design systems. Those gener-
ated internally may be manually generated (in the interactive
graphics editor) or procedurally generated at any level. Pro-
cedural generation of cells is normally limited t o composite
cells (cells created by combining previously defined cells) and
generated cells (such as PLAs and ROMs), but can optionally
be used for the creation of special types of cells, such as
technology-independent cells, or cells having configurable
speed or drive capabilities. Consequently, the system provides
for the combination, in a single design, of cells from a variety
of different sources, and the designer may determine which
sources best satisfy the requirements of the design.

The important design information is stored in a small col-
lection of design databases by Art. Most of this informa-
tion is contained in a cell database for each cell in the design.
When cell information is read or created by the system, it is
distilled down t o a basic external description of the cell which
contains only that information necessary t o utilize the cell as
a component in other cells. Thus, the size and amount of time
necessary t o scan the design database are minimized. This fea-
ture offers the flexibility to create design methods which pro-

cess the entire external cell interface while still allowing a rela-
tively short design loop.

Placement and routing of cells within Art is facilitated by a
number of automatic routines. These include the “Tiler” pro-
gram, which produces data-path-like structures, and an auto-
matic channel router, “MidBus,” which implements a very
general two-layer routing algorithm for random interconnect
between rows or columns of cells. Where these automatic tools
are inappropriate, the designer may specify the placement and
routing through easily written procedures. The designer may
utilize any or all of these methods in a given design.

All of the tools are written in and compatible with Art, and
thus the designer is able t o choose the appropriate tool inde-
pendently for each part of a layout. Hence, the designer is
always able to be as specific as he desires in controlling the
action of the system. If none of the existing tools is appro-
priate to the task at hand, he is free to modify an existing tool,
t o create an entirely new special-purpose tool, o r even t o
directly specify the design procedurally. The designer is thus
not forced to distort a design in an attempt to map an other-
wise incompatible design to the capabilities of the system.

This methodology is sufficiently flexible t o allow a large
number of unique problems t o be addressed. The example chip
in this article required the generation of regular and irregular
rectangular arrays of cells, the hierarchical interconnection of
functional blocks, the use of a PLA, and the layout and inter-
connection of random logic. The designers were able t o use the
data-path compiler, the channel router, the automatic PLA
generator, and various procedural place and route functions t o
complete the chip. It will be shown that the combination of
these techniques provided an efficient, well-structured, and
easily maintained design.

Other articles will deal in more detail with the generation of
specialized cell generators, including an in-depth examination
of the PLA generator and an examination of methods for pro-
ducing technology-independent generated cells. The use of Art
for the efficient generation of procedural place and route, such
as its use in the control block, will be described. Also, the
interface between this layout system and external simulation
and verification tools will be discussed.

II. History of the System
The concept of using an imbedded language approach was

first developed at the California Institute of Technology in
1977 with the creation of LAP 111. As used at Caltech, how-
ever, this tool was regarded primarily as a method for creating
low-level cells rather than for the assembly of complex higher-
level cells [2]. Subsequent work of the Caltech Silicon Struc-

236

tures Project (SSP) proceeded along a path toward a “silicon
compiler.” The design system would require the designer to
specify connectivity information and, possibly, relative cell
placement information, from which the geometry would be
created in an automated manner [2]. Examples of this ap-
proach include a system for the implementation of data paths,
the Bristle-blocks system written by D. Johannansen in 1978
[3] , and Earl [2].

The original Art program was developed at JPL in 1980 by
John Wawrzynek using many of the concepts present in LAP.
This version of Art was written in Pascal and supported only
the capability of creating the basic primitive geometrical ele-
ments found in Caltech Intermediate Form (CIF) [4]. This
original Art suffered from the requirement that a completely
new version was needed for each new CMOS or NMOS
technology.

In 1982, a complet.ely new version of Art was produced at
JPL by Paul Belk and Steve Trimberger. This Art supported
some of the concepts of the current system, specifically the
use of symbol names, the definition of connection points, and
the maintenance of a design database for each cell. This system
evolved over the next few years to include a number of semi-
automatic routers and cell generators but still suffered from
the requirement of a separate version for each technology.

In 1986, Art was completely rewritten under theC language.
This version of Art was designed to be technology-independent
and to support the generation of technology-independent
designs. In the course of producing this version, a number of
more sophisticated placement and routing tools were devel-
oped. In addition, the dependence on CIF as the geometric
database was eliminated; the parser and generator for the geom-
etry files were separated from the other code to allow the sub-
stitution of other geometrical formats. Furthermore, the
concept of logical names for symbols and ports was extended
to include instance names, and the ease of access and com-
pleteness of each cell’s database were substantially improved.

Since its initial introduction, Art has seen substantial im-
provements and additions. It is expected that this enhance-
ment will continue because of the ease with which these addi-
tions can be made to the basic system.

111. Description of Design
The sample chip to be described in this article is part of a

multi-processor signal processing unit. The chip is responsible
for controlling access to dual-port RAM, providing sequential
RAM access for one of the CPUs, and providing a collection of
utility counters and timers. In addition, it supports an autono-

mous data collection mode during the time that both CPUs
are powered down.

The chip was chosen for this article because it provides an
effective demonstration of the combination of several dispa-
rate design techniques on a single chip. At the highest level,
the chip contains a data-path-like structure containing a large
number of standard utilities, such as counters, latches, shift
registers, and buffers; and a control section containing highly
regular structures (including a PLA), irregular structures (clock
generators), and completely random logic. It will be shown
that, with the exception of lowest-level leaf cells, each con-
taining about 10 simple gates and numbering less than 20, it
was possible to efficiently implement all elements of the chip
in Art using automatic or semi-automatic methods.

The chip is divided into four functional units (Fig. 1). These
units are discussed below.

A. High-speed Block

The high-speed block contains the cells which control access

(1) a 3-word by 16-bit buffered read FIFO;

(2) a 3-word by 16-bit buffered write FIFO;

(3) a 16-bit starting address latch;

(4) a 16-bit auto-increment address pointer; and

(5) a 16-bit bidirectional tristate buffer between the high-

to the RAM by the two CPUs. Specifically:

speed block and the low-speed block.

B. Low-Speed Block

The low-speed block contains a number of utility blocks,
including timers, address latches and pointers, serial-to-parallel
and parallel-to-serial converters, and command state latches.
Specifically:

(1) a 16-bit address multiplexer;

(2) two 16-bit latches;

(3) a 16-bit auto-increment address pointer;

(4) 16-bit serial-to-parallel and parallel-to-serial converters;

(5) 6 4-bit to 25-bit timers;

(6) a 5-bit, double-buffered command latch; and

(7) a 16-bit test shift register.

C. Control Block
The control block contains the PLA which controls all

other devices on the chip. It also contains circuits for condi-

237

tioning off-chip inputs and outputs and for producing the two-
phase clocks required by other circuits. Specifically:

(1) a23-word by 42-bit control PLA;

(2) an inverting Schmitt trigger for reset conditioning;

(3) two one-shot circuits for edge detection;

(4) 7 flip-flops for conditioning of input signals;

(5) 3 two-phase, non-overlapping clock generators for pro-
ducing chip clocks; and

(6) synchronization logic for synchronizing memory re-
quests from the low-speed block with the high-speed
clocks.

D. RAM Access Arbiter Block

The RAM access arbiter block contains the random logic
necessary to control RAM access between the two CPUs and
the chip. It also creates the signals that increment the RAM
address pointers.

IV. Description of Methodology
Much of the power and generality of the approach described

comes from the fact that the designer may solve a complicated
design problem by breaking the problem into a number of
separate stages, each of which utilizes a small number of sim-
ple and well-understood design techniques. The design is thus
reduced to the successive application of these techniques. Since
these techniques may be combined in a very flexible manner
at each level, it is possible to implement a chip architecture
which is quite complicated when viewed in its entirety, by suc-
cessively breaking the design into architectural blocks, each of
which in turn consists of a small number of blocks having a
single simple, well-defined interface. Further, the implementa-
tion of each technique may be broken into a small number of
simple primitives.

Since the methodology described in this article is a layout
methodology, no consideration is given to other systems
issues. In particular, it must be assumed that the system design
has been properly partitioned to allocate reasonable function-
ality to the chip being implemented and that the system design
as a whole has been simulated to verify that the chip, once
produced, will operate properly within the system. It will also
be necessary at the conclusion of the layout effort to provide
for functional layout verification in the form of a layout vs.
schematic check or a net list extraction. Layout design rule
checking is also important but is usually performed contin-
uously during the design. In the case of the chip described in
this article, design rule checking was performed with the inter-

nal design rule checker DRC, which is compatible with both
Art and the graphics editor.

As with any layout methodology, it is very important to
devote sufficient design time at the beginning of the project to
the development of an optimal design partitioning scheme. It
is extremely important that, to the greatest extent possible,
each stage of the design be reduced to a small number (nor-
mally less than 10) of self-contained blocks having a simple
and well-defined interface. Although it is possible to imple-
ment a badly partitioned design using the methodology de-
scribed, the design will almost certainly be significantly more
prone to error and take much longer to implement.

The following sections provide a brief description of the
primitives and techniques which were combined to implement
the chip discussed. These concepts are a subset of those sup-
ported by this methodology but are sufficient to demonstrate
its use.

A. Imbedded Languages

The power and flexibility of the design methodology de-
scribed in this article are attributable to the use of direct pro-
cedural methods for specifying the placement and routing of
objects based on logical references to size, location, and type
attributes associated with those objects. The generation of the
layout is thus reduced to a programming task utilizing all the
power and flexibility that such an approach implies.

Art consists of the definition of various database structures
containing information about the design, a subroutine library
for creating and manipulating these structures, routines for
converting these structures into the final geometrical informa-
tion, and a collection of macros to allow easier access to the
program functions. Instead of attempting to define a special
purpose syntax for the specification of the design, Art is writ-
ten in and accessed by programs written in C. Thus the designer
is able to use all the functionality and power of a standard pro-
gramming language. Simply stated, Art is a layout system im-
bedded in C, or more simply an “Imbedded Layout Language.”

No assumptions about the nature of the geometrical design
rules or the target fabrication technology need be made in Art.
Art is very largely technology-independent in the sense that
such details as design metric, mask layers, geometrical design
rules, and the format of the final layout database are not built
into Art. The design metric may be chosen by the designer,
since the numbers used in Art may be taken to represent what-
ever measurement units are necessary. The names and natures
of the mask layers are read by Art from a file unique to that
technology, as are a set of geometrical design rules, and the
layout database is read and written by separate input and out-
put modules and converted to an internal database which is

238

used by Art. Art tends to assume a certain flexibility in terms
of symbol hierarchy, but the system includes filters which may
be used to flatten the hierarchy to whatever extent is neces-
sary for the target mask pattern-generation technology. The chip
described was produced for a standard 3 .O-micron CMOSlBulk
technology and the mask data was transferred to the fabrica-
tion house in the Caltech Intermediate Form (CIF).

Art is not limited to use by experienced programmers. Al-
though a skilled programmer may access the primitive func-
tions directly to produce a layout, Art may also be used to
generate various placement and/or routing functions which are
then accessible to non-programmers. In the sample chip, both
approaches were used. The data-path placement program Tiler,
the channel router MidBus, and the PLA generator were
written in Art by skilled programmers to allow simple non-
procedural specification for major portions of the design.
These programs may be used by non-programmers to solve a
more general set of problems. In the control block, however,
much of the placement and routing was performed using a few
special purpose subroutines which directly accessed the Art
primitive functions.

The capability of defining both general-purpose and special-
purpose placement and routing functions within the same
system allows for maximum efficiency in the design process.
Furthermore, it is often possible to enhance a special-purpose
solution to the point where it provides a more effective gen-
eral purpose solution than the more traditional semi-custom
approaches.

B. Symbols and Instances

At a basic level, a symbol is a portion of the design which
has been grouped into a single self-contained logical unit by
the designer for reasons of convenience. It i s defined solely
by its geometrical representation if generated external to the
system, or by the imbedded language source from which the
geometry is eventually created. The geometrical representation
used in this system is extended to include abstract attributes
including each symbol’s name, size, connection points, and
alignment points. #en the symbol is processed by the system,
a “symbol reference database” containing this abstract infor-
mation is created. This database is associated with a program
identifier identical to the symbol name.

When a (child) symbol is used within the definition of a
(parent) symbol, only the abstract information contained in
the child symbol’s reference database is accessible. Thus,
within the context of the parent symbol, the child’s abstract
attributes comprise the complete description of the child
symbol.

This use of the child symbol is referred to as an instance.
The instance database includes the reference to the child sym-
bol, the physical location of the instance within the parent,
and an optional instance name. If an instance name is pro-
vided, the location of the instance’s connection and alignment
points may be easily accessed. If no instance name is provided,
this information is not readily available. The instance name, if
provided, will appear in the extended geometrical representation
of the parent symbol.

C. Ports: Connection and Alignment Points

When combining child symbols within the parent symbol, it
is necessary to determine both the correct location for the
child (relative to other items within the parent) and the loca-
tions on the child to which connections are to be made either
by wire connection or by direct cell abutment. These locations
are referred to as the child symbol’s (or instance’s) ports. Each
port is described in the child symbol’s reference database. This
description includes the port’s location on the child symbol,
its name, its connection layer, and its type. For connection
points, the connection layer indicates the material (e&, metal
or poly) of the wire which should connect to it; the type indi-
cates the purpose (e&, input, output, VDD, etc.) of the con-
nection. If the port is used only for alignment purposes, then
the material and type are left blank. All references to a port
within the language are made using the instance name and port
name.

In order to simplify the action of many of the special pur-
pose interconnect procedures, the designer will often impose a
naming standard for the ports. For example, it is common to
define the upper right VDD port as “VDD-ur” and the lower
left ground port as “GND-11” and to use these as the align-
ment points. Similarly, on signals which feed through the sym-
bol vertically, the top port is referred to as “name-t” and the
bottom port as “name-b.”

D. Leaf Cells and Composite Cells

Previously, symbols were defined as a portion of the design
grouped into a unit by the designer for convenience. It is use-
ful to distinguish between several categories of symbols based
on the symbol’s use and internal structure. The simplest type
of symbol, containing at most a few geometrical objects and
no ports, which has been defined solely to allow easy access to
a standard feature of the design technology, is referred to as a
macro symbol. These symbols serve the same purpose as
macros in a programming language. Common examples, used
in most designs, are the inter-layer contacts.

More complex symbols, which provide a basic circuit func-
tion, are referred to as leaf cells. Leaf cells are the basic atomic
building blocks of a structured design. Often these cells are

239

quite simple internally, consisting of only a small number of
gates, but occasionally may be very large atomic structures
such as PLAs, RAMS, or ROMs, which, though large, still can-
not be readily described in terms of simpler functional units.
When the cells are small and simple in function, they are
frequently created by hand in an interactive graphics editor.
When more complex, it is often useful t o create special gener-
ators such as PLA or ROM generators to create the cell. Either
type of leaf cell may also be easily imported from an external
system which provides a library of cells or of cell generators.

Leaf cells approximate the function of standard cells in a
standard cell system but differ from standard cells in two
important respects. First, they are defined by the designer
only as needed for the particular application; and second, they
may be optimized, or customized, for the specific environment
in which they will be used. Though this customization is not
necessary for the design methodology t o work, it provides a
powerful means of increasing the efficiency of the final
design.

Leaf cells are normally viewed as “black boxes” for both
layout and function. Hence, in addition to the geometrical
information, it is necessary t o provide the abstract attributes
of each leaf cell. Various methods have been provided for
doing this. The graphical editor supports the direct entry of this
information. When standard cells are used. it is often sufficient
t o convert the “footprint” data which is provided with the cell
library.

As was described previously, the methodology is based on
the synthesis of the final design by combining many symbols
into more complicated symbols. These symbols, which are
readily considered t o be a collection of functional sub-blocks,
are referred to as composite cells. The distinction between leaf
and composite cells is extremely useful in understanding the
application of the design methodology within the context of
the generation of these symbols, but when a symbol is used as
a child symbol for the generation of a parent symbol, this dis-
tinction becomes unimportant. That is, within this design
methodology, leaf cells and composite cells may be used inter-
changeably as child symbols in the generation of higher-level
parent symbols.

It is important t o realize that a normal design will utilize
a t least 3 separate levels of source files. The results of each
level are then used as if they were leaf cells for input t o the
next level.

V. Implementation Details
Within the Art methodology, a chip is designed by starting

with a top-level architectural view and dividing the chip into a

small number of relatively self-contained components having a
well-defined interface. These components are then analyzed in
a recursive manner to reduce them t o simpler components in a
similar manner. This process continues until the designer is
able t o identify an appropriate set of leaf cells with which the
design may be implemented.

Once a preliminary leaf cell set has been identified, the
designer may modify the chip design in order t o minimize the
number of leaf cells which must be created for the design.
Also, he may determine which, if any, of the leaf cells are al-
ready available from external sources. He will also make a pre-
liminary decision on the method t o use t o generate the leaf
cells.

Having defined the design hierarchy and the leaf cell set,
the designer must then resynthesize the complete chip. He
does this by choosing the appropriate placement and routing
algorithms with which to create each component. The designer
must also consider the overall chip floor plan when implement-
ing each component so that its size and port locations are well
matched to the overall structure. I t is not uncommon for a
designer t o modify the initial split-up of the design at this
point in order to simplify the final design. Hence the split-up
and synthesis should be viewed as an iterative process.

For the sample chip described in Section 111, the top level
was divided into components which corresponded t o the four
functional blocks. Each block required connections to the
chip’s pads and each block shared many control signals with
every other block. Analysis of the interblock connections pro-
vided the following:

(1) The high speed and low speed blocks’ data busses
interconnect;

(2) The low speed block and control block have many
common signals;

(3) The high speed and arbiter blocks have many common
signals; and

(4) The high speed block has most of the data bus pad
connections.

Thus, the most practical layout had the high speed block
above the low speed block on the left of a central routing area
and the arbiter block above the control block to the right. The
data busses for the high speed block were routed from the
middle of the high speed block t o pins on the left; and across
the chip, between the control and arbiter blocks, to additional
pads on the right. Details of the layout methods used for the
top level of the chip are described in the following section.

240

A. Top-Level Layout

Once the top-level functional division and floor plan were
decided on and each of the four functional blocks generated,
it was possible to produce the actual top-level geometry. The
generation of this geometry used a number of the techniques
which are supported under the Art system. The sequence of
operations was as follows:

(1) Initialize the Art system and open output files;

(2) Read in geometry information for the sub-blocks;

(3) Scan each sub-block to obtain a list of all its ports;

(4) Place high speed and low speed (PMC;) blocks at final
locations, calculate y positions of’ arbiter and control
blocks (x position resolved later);

(5) Generate the signal list and tie points for the central
bus;

(6) Allocate bus channels and determine bus width;

(7) Place arbiter and control blocks;

(8) Draw the main power grid;

(9) Draw the middle control bus;

(10) Process the non-bus ports; and

(1 1) Close the symbol definition and the output file.

The main program which performs the above steps is a fairly
compact three pages of code. The resulting layout is shown in
Fig. 1.

B. Port List Scanning

One of the more tedious aspects of entering the layout pro-
gram is the individual description of the types of interconnect
that are required for each individual port in the subcells. In
the top level of the sample circuit, it was determined that all
of the ports on each cell fell into one of a few groups. The
actions necessary for each port in the group were easily speci-
fied. Since one of the actions supported in the Art system is
the ability to scan each port of a symbol, the layout program
was able to generate the necessary two lists of port names for
each symbol.

All ports which were to be connected to the central data
bus were given names starting with the characters “bus-”.
These characters were followed by the name of the control sig-
nal to which it was to be connected plus an optional “-1”,
“-2”, etc. For example, port “bus-phi2” would be connected
to control line “phi2”, and ports “bus-Phil-1” and “bus-
phil-2” would both be connected to control line “Phil”. The

control bus connectivity was thus readily available directly
from the port names themselves.

Similarly, the VDD, GND, and pad 1/0 ports were provided
with names which indicated the correct connective action. For
example, the low speed block supported automatic checking
of the interconnect with the high speed block (ports starting
with “lp-”), pad connection ports on the bottom of the
block (“pd-”), pad connections on the left (“pl-”), and VDD
and GND connections. Any port whose name did not start
with one of the expected prefixes would cause an error mes-
sage to be displayed.

At first glance, restricting port names to start with the pre-
fixes above might seem to place an unreasonable burden on
the designer. In fact, however, all the port names were gener-
ated procedurally in the lower blocks and the final intercon-
nect was verified with a layout vs. schematic tool. Hence, the
top-level interconnection was produced with very little effort.

C. MidBus Router

The large numbers of control signals which were intercon-
nected between the four sub-blocks of the chip suggested the
use of an automatic channel router. Since no channel router
existed in the system at the time this chip was implemented, it
was decided to produce one specifically to satisfy the require-
ments for this chip.

The first issue resolved was the router type. Due to the pre-
existing power bus routing, it was decided to use a simple
channel router utilizing a vertical metal channel with horizontal
connections to the sub-block ports made in metal-2. Further-
more, it was decided to support the sharing of multiple sig-
nals within a given vertical channel but not to allow a signal
to jog between vertical channels. This resulted in a very fast
procedure which produced acceptable interconnect routing
for this chip.

Using the port list which was generated as described in the
previous section, it was a simple exercise to generate the list
of signal names and tie points. An initial list of signals was also
provided in the source code as a check for any missing signals.
Finally, a list of the control signals which were to be con-
nected to the chip’s pads was also included.

The generation of the entire control bus was thus reduced
to the following steps:

(1) Define control signals with external (i.e., pad)

(2) Add an initial list of expected control signals (for extra

connections;

check);

241

(3) Generate a complete list of signals and tie points from
port scan;

width);
(4) Allocate vertical channels t o signals (and determine bus

(5) Place each block at the calculated location; and

(6) Create the geometry for the busses.

Note that the routines utilized in steps 4 and 6 constitute
what is considered the MidBus router. I t is thus able t o produce
a bus from any list of signal names and tie points.

D. Sub-Block Implementation

Having defined the interface between the top-level cells, it
was necessary t o determine the design technique most appro-
priate for each of the cells. The highly regular structure of the
high and low speed blocks, along with the fact that each of
these blocks operated on three common data busses and had a
minimum of other interconnections (except for control sig-
nals), made them ideal candidates for layout using a data-
path layout tool. Such tools are generally limited t o bus-type
structures but often prove t o be the most efficient implemen-
tations of such structures.

The arbiter block was composed mainly of random logic
and had very little internal regularity. Large amounts of ran-
dom logic are notoriously vulnerable t o layout error and often
require many design iterations, but it was determined in this
case that the required random logic could be reduced t o a
small number of leaf cells, each containing fewer than 10 sim-
ple gates. The cells were then placed in two columns and
routed together using the MidBus router (Fig. 2) .

The control block also lacked the regularity apparent in
the high and low speed blocks but could make use of many
of the lower-level primitive subroutines which had been devel-
oped as part of Tiler t o allow the direct specification of its
internal placements and wiring. The PLA in the control block
required the generation of a special-purpose CMOS/Bulk PLA
generator which accepted assembler-like input describing the
state machine and generated a PLA cell. Neither of the special
techniques used within the block is within the scope of this
article, and the control block is thus best treated as a leaf cell
within this context.

E. Tiler Datapath Compiler

logic for each unit is contained in a leaf cell a t the top of each
column, and the control lines run vertically through each cell.

Placement of the cells in each column is defined by a sim-
ple “COLUMN” macro. This macro creates a data structure
containing the name of the active cell, the name of the control
cell, the active bit positions, and whether the cells should be
placed with or without first mirroring them. In addition, a
number of data arrays are defined for each column. The
“I-name” array provides a list of the ports which must line
up vertically inside the column. This information is used by
the system to verify the leaf cell design. The “x-name” arrays
contain a list of contact points for the contacts t o the busses
and for those cells which are contact programmable. The
“p-name” arrays provide the port assignments for the external
control signals. Using the information provided in the struc-
tures just described, after placement of each column, the sys-
tem would automatically define the external control ports,
verify the control signal alignment, and place contacts at the
appropriate locations for bus connections and configuration.

In addition to the three busses, adjacent columns may con-
nect directly together. Placement of these input and output
ports was performed in an ad hoc manner and then verified
by the interconnect procedures. Figure 3 shows the low-speed
block. It should be noted that most sections of the low-speed
block have a very high density of active circuitry. Those sec-
tions which are empty are due t o the fact that some of the ele-
ments in this block are less than 16 bits wide and therefore did
not require a full bus slice. The high-speed block was com-
posed almost entirely of 16-bit slices and thus is uniformly
dense.

F. Probe Point Generator

In any complicated chip, it is useful t o provide for direct
probe access t o verify the chip operation and/or determine the
reason for non-operation of the prototype units. On the sam-
ple chip, it was determined that the majority of signals of
interest were present on the middle control bus. In addition, it
was determined that there would be ample space between the
control block and the bus arbiter on the right side of the chip,
directly adjacent t o the middle control bus. This provided an
opportunity t o create two arrays of probe points, which would
provide the capability t o sample any signal on the control bus.

The creation of the probe point arrays was accomplished by
writing a simple routine in Art which created a metal pad with

Two major sub-blocks of the chip, the high speed and low
speed blocks, are easily represented as rectangular arrays ofleaf
cells. It was determined early in the design cycle that the opti-
mum arrangement is a vertical slice for each functional unit
with 3 common data busses routed between each bit. Control

a large enough cut in the passivation layer t o allow the metal
to be directly contacted by a normal chip probe. A wire was
run from the center of the metal pad t o the inside periphery of
the probe array, and a port was placed at the end of the wire.
To provide for the probing of each signal of interest, a list was

242

compiled of all signals in the control bus. That list was then
scanned in a loop, and a probe point was created for each sig-
nal in the list. When this cell was added to the top-level chip,
the MidBus router automatically scanned the ports at the
periphery of the cell and connected each of the probe points
to the appropriate signal on the control bus.

As can be seen in Fig. 4, the addition of the probe point
array significantly changed the topography of the chip, espe-
cially the width of the MidBus, due to the increased length of
most of the signal lines, which had previously been much more
local. With the exception of the generation of the routine that
created a single probe point in the array (less than one page of
code), the entire process was automatic. The generation of
the probe point array required a total of approximately 4 man-
hours. Further, the difference in the characteristics of the con-
trol bus before and after the addition of the probe points pro-
vides a reasonable indication of the efficiency of MidBus jn use
of space.

VI. Summary
In this article, a methodology was presented, the Art

methodology, in which an imbedded language is used to man-
age the complexity of a full-custom VLSI design. It was shown
that the use of this methodology significantly reduced the
complexity faced by a designer at any stage of a design with-
out appreciably reducing the density or performance of that
design. Thus, the Art methodology provides most of the bene-
fits of traditional full-custom integrated-circuit design while
substantially reducing the design costs.

Unlike many semi-custom design approaches, the Art
methodology does not impose any inflexible constraints on
the design itself. Several methods are shown which make the
implementation of circuit structures less difficult, and through
the application of combinations of these methods, a large
variety of circuits may be implemented. Further, the designer
is always free to disregard any of the existing methods in favor

of developing special-purpose techniques for the implementa-
tion of specific structures. Although this development effort
may increase the cost of the design, it is shown that many such
techniques can be developed quite efficiently within the con-
text of Art, and, more importantly, that such development
will not affect the implementation of other parts of the design.
Thus, the designer is allowed to make individual cost/benefit
trade-offs on whichever portions of the design are considered
critical.

Art provides considerable power beyond the management of
high-level design complexity. Since Art is essentially technology-
independent, it can be used for the development of designs in
a wide variety of technologies, allowing rapid adaptation to
the new circuit design technologies and techniques. In addi-
tion, the independence of the functional aspects of Art from
the final representation of the mask geometry allows the adap-
tation of Art to diverse fabrication technologies and the imple-
mentation in Art of more fabrication-specific constructs, such
as alignment marks.

The chip discussed in this article provides only one example
of the power of the Art methodology. The chip was chosen
because it demonstrated several different implementation
techniques, but there are additional techniques that may be
explored by examination of other types of chips. The chip
described, however, provides useful information about the effi-
ciency of the Art methodology. Because it was possible to use
the same leaf cell in multiple contexts, it was possible to
reduce the number of leaf cells designed to approximately 20.
The layout of these cells required approximately 8 man-weeks.
After the completion of leaf cell design, the implementation of
the entire chip required three weeks for a two-person design
team. Thus, a 14-man-week design effort resulted in the imple-
mentation of a chip having approximately 12,000 transistors.
A small number of errors were detected in the chip by subse-
quent automatic layout vs. schematic comparison, ranging
from errors in top-level interconnection to errors in leaf cell
design. These errors required less than a day to correct.

Acknowledgment

The authors wish to acknowledge Tom Bulgerin, Linda Lee, Peter Jones, and Tim Shaw
for their contribution to the development of the layout system and the chip used as an
example in this article. The authors also gratefully acknowledge Dr. William Whitney for
his insight and advice in the development of the topics discussed.

243

Ref e rences

[l] C. R. Lang, LAP UserSManuaZ, California Institute of Technology Computer Science
Department Technical Report No. 3356, 1979.

[2] S . Trimberger, “A Structured Design Methodology and Associated Software Tools,”

[3] D. Johannansen. “Bristle Blocks-A Silicon Compiler,” in Proceedings of the 16th

IEEE Transactions on Circuits and Systems, vol. CAS-28, no. 7, July 1981.

Design Automation Conference, 1979.

[4] C. A. Mead and L. A. Conway, Introduction to VLSI Systems, Addison-Wesley,
1980.

244

.....-
c HIGH SPEED BLOCK

r- t-

--
I 1-

l e------.

i

CONTROL
BLOCK LOW SPEED BLOCK - -- c-

ORIGINS PAGE Is
OF POOR Q U A J J ~

I

,

. t-
t

1
I . f

P

Fig. 2. Arbiter block

Fig. 1. Top level of sample chip

245

Fig. 3. Low speed block Fig. 4. Top level of sample chip with probe points

ORIGINAL PAGE rs
DE POOR QUALITY

246

