764 research outputs found

    Ambipolar Graphene Field Effect Transistors by Local Metal Side Gates

    Get PDF
    We demonstrate ambipolar graphene field effect transistors individually controlled by local metal side gates. The side gated field effect can have on/off ratio comparable with that of the global back gate, and can be tuned in a large range by the back gate and/or a second side gate. We also find that the side gated field effect is significantly stronger by electrically floating the back gate compared to grounding the back gate, consistent with the finding from electrostatic simulation.Comment: 4 pages, 3 figure

    Observation of Quantized Hall Effect and Shubnikov-de Hass Oscillations in Highly Doped Bi2Se3: Evidence for Layered Transport of Bulk Carriers

    Get PDF
    Bi2Se3 is an important semiconductor thermoelectric material and a prototype topological insulator. Here we report observation of Shubnikov-de Hass (SdH) oscillations accompanied by quantized Hall resistances (Rxy) in highly-doped n-type Bi2Se3 with bulk carrier concentrations of few 10^19 cm^-3. Measurements under tilted magnetic fields show that the magnetotransport is 2D-like, where only the c-axis component of the magnetic field controls the Landau level formation. The quantized step size in 1/Rxy is found to scale with the sample thickness, and average ~e2/h per quintuple layer (QL). We show that the observed magnetotransport features do not come from the sample surface, but arise from the bulk of the sample acting as many parallel 2D electron systems to give a multilayered quantum Hall effect. Besides revealing a new electronic property of Bi2Se3, our finding also has important implications for electronic transport studies of topological insulator materials.Comment: accepted by Physical Review Letters (2012

    Synthetic Graphene Grown by Chemical Vapor Deposition on Copper Foils

    Full text link
    The discovery of graphene, a single layer of covalently bonded carbon atoms, has attracted intense interests. Initial studies using mechanically exfoliated graphene unveiled its remarkable electronic, mechanical and thermal properties. There has been a growing need and rapid development in large-area deposition of graphene film and its applications. Chemical vapour deposition on copper has emerged as one of the most promising methods in obtaining large-scale graphene films with quality comparable to exfoliated graphene. In this chapter, we review the synthesis and characterizations of graphene grown on copper foil substrates by atmospheric pressure chemical vapour deposition. We also discuss potential applications of such large scale synthetic graphene.Comment: 23 pages, 4 figure

    Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line

    Get PDF
    PECVD silicon nitride photonic wire waveguides have been fabricated in a CMOS pilot line. Both clad and unclad single mode wire waveguides were measured at lambda = 532, 780, and 900 nm, respectively. The dependence of loss on wire width, wavelength, and cladding is discussed in detail. Cladded multimode and singlemode waveguides show a loss well below 1 dB/cm in the 532-900 nm wavelength range. For singlemode unclad waveguides, losses < 1 dB/cm were achieved at lambda = 900 nm, whereas losses were measured in the range of 1-3 dB/cm for lambda = 780 and 532 nm, respectively

    Characterization of PECVD Silicon Nitride Photonic Components at 532 and 900 nm Wavelength

    Get PDF
    Low temperature PECVD silicon nitride photonic waveguides have been fabricated by both electron beam lithography and 200 mm DUV lithography. Propagation losses and bend losses were both measured at 532 and 900 nm wavelength, revealing sub 1dB/cm propagation losses for cladded waveguides at both wavelengths for single mode operation. Without cladding, propagation losses were measured to be in the 1-3 dB range for 532 nm and remain below 1 dB/cm for 900 nm for single mode waveguides. Bend losses were measured for 532 nm and were well below 0.1 dB per 90 degree bend for radii larger than 10 mu m

    Fast Gibbs sampling for high-dimensional Bayesian inversion

    Get PDF
    Solving ill-posed inverse problems by Bayesian inference has recently attracted considerable attention. Compared to deterministic approaches, the probabilistic representation of the solution by the posterior distribution can be exploited to explore and quantify its uncertainties. In applications where the inverse solution is subject to further analysis procedures, this can be a significant advantage. Alongside theoretical progress, various new computational techniques allow to sample very high dimensional posterior distributions: In [Lucka2012], a Markov chain Monte Carlo (MCMC) posterior sampler was developed for linear inverse problems with â„“1\ell_1-type priors. In this article, we extend this single component Gibbs-type sampler to a wide range of priors used in Bayesian inversion, such as general â„“pq\ell_p^q priors with additional hard constraints. Besides a fast computation of the conditional, single component densities in an explicit, parameterized form, a fast, robust and exact sampling from these one-dimensional densities is key to obtain an efficient algorithm. We demonstrate that a generalization of slice sampling can utilize their specific structure for this task and illustrate the performance of the resulting slice-within-Gibbs samplers by different computed examples. These new samplers allow us to perform sample-based Bayesian inference in high-dimensional scenarios with certain priors for the first time, including the inversion of computed tomography (CT) data with the popular isotropic total variation (TV) prior.Comment: submitted to "Inverse Problems

    Topological insulator based spin valve devices: evidence for spin polarized transport of spin-momentum-locked topological surface states

    Full text link
    Spin-momentum helical locking is one of the most important properties of the nontrivial topological surface states (TSS) in 3D topological insulators (TI). It underlies the iconic topological protection (suppressing elastic backscattering) of TSS and is foundational to many exotic physics (eg., majorana fermions) and device applications (eg., spintronics) predicted for TIs. Based on this spin-momentum locking, a current flowing on the surface of a TI would be spin-polarized in a characteristic in-plane direction perpendicular to the current, and the spin-polarization would reverse when the current direction reverses. Observing such a spin-helical current in transport measurements is a major goal in TI research and applications. We report spin-dependent transport measurements in spin valve devices fabricated from exfoliated thin flakes of Bi2Se3 (a prototype 3D TI) with ferromagnetic (FM) Ni contacts. Applying an in-plane magnetic (B) field to polarize the Ni contacts along their easy axis, we observe an asymmetry in the hysteretic magnetoresistance (MR) between opposite B field directions. The polarity of the asymmetry in MR can be reversed by reversing the direction of the DC current. The observed asymmetric MR can be understood as a spin-valve effect between the current-induced spin polarization on the TI surface (due to spin-momentum-locking of TSS) and the spin-polarized ferromagnetic contacts. Our results provide a direct transport evidence for the spin helical current in TSS.Comment: 10 pages, 3 figure

    Effect of Heat Shock, Pretreatment and Hsp70 Copy Number on Wing Development in Drosophila Melanogaster

    Get PDF
    Naturally Occurring Heat Shock (HS) during Pupation Induces Abnormal Wing Development in Drosophila; We Examined Factors Affecting the Severity of This Induction. the Proportion of HS-Surviving Adults with Abnormal Wings Varied with HS Duration and Intensity, and with the Pupal Age or Stage at HS Administration. Pretreatment (PT), Mild Hyperthermia Delivered Before HS, Usually Protected Development Against HS. Gradual Heating Resembling Natural Thermal Regimes Also Protected Wing Development Against Thermal Disruption. Because of the Roles of the Wings in Flight and Courtship and in View of Natural Thermal Regimes that Drosophila Experience, Both HS-Induction of Wing Abnormalities and its Abatement by PT May Have Marked Effects on Drosophila Fitness in Nature. Because PT is Associated with Expression of Heat-Inducible Molecular Chaperones Such as Hsp70 in Drosophila, We Compared Thermal Disruption of Wing Development among Hsp70 Mutants as Well as among Strains Naturally Varying in Hsp70 Levels. Contrary to Expectations, Lines or Strains with Increased Hsp70 Levels Were No More Resistant to HS-Disruption of Wing Development Than Counterparts with Lower Hsp70 Levels. in Fact, Wing Development Was More Resistant to HS in Hsp70 Deletion Strains Than Control Strains. We Suggest that, While High Hsp70 Levels May Aid Cells in Surviving Hyperthermia, High Levels May Also Overly Stimulate or Inhibit Numerous Signaling Pathways Involved in Cell Proliferation, Maturation and Programmed Death, Resulting in Developmental Failure
    • …
    corecore