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Abstract
Solving ill-posed inverse problems by Bayesian inference has recently attracted
considerable attention. Compared to deterministic approaches, the probabilistic
representation of the solution by the posterior distribution can be exploited to
explore and quantify its uncertainties. In applications where the inverse solution is
subject to further analysis procedures can be a significant advantage. Alongside
theoretical progress, various new computational techniques allow us to sample very
high dimensional posterior distributions: in (Lucka 2012 Inverse Problems 28
125012), and a Markov chain Monte Carlo posterior sampler was developed for
linear inverse problems with ℓ1-type priors. In this article, we extend this single
component (SC) Gibbs-type sampler to a wide range of priors used in Bayesian
inversion, such as general ℓp

q priors with additional hard constraints. In addition, a
fast computation of the conditional, SC densities in an explicit, parameterized form,
a fast, robust and exact sampling from these one-dimensional densities is key to
obtain an efficient algorithm. We demonstrate that a generalization of slice sam-
pling can utilize their specific structure for this task and illustrate the performance of
the resulting slice-within-Gibbs samplers by different computed examples. These
new samplers allow us to perform sample-based Bayesian inference in high-
dimensional scenarios with certain priors for the first time, including the inversion
of computed tomography data with the popular isotropic total variation prior.

Keywords: Bayesian inversion, MCMC, Gibbs sampler, slice sampling,
computed tomography, total variation prior
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1. Introduction

1.1. Bayesian inversion

We consider the task of inferring information about an unknown quantity from indirect, noisy
measurements and assume that a reasonable mathematical model is given by a linear, ill-
posed operator equation including additive noise terms. The following discrete forward model
is used to carry out the computational inference:

e= +f A u . 1( )

Here, Îf m represents the measured data, Îu n a suitable discretization of the unknown
quantity we wish to reconstruct and Î ´A m n a corresponding discretization of the
continuous forward operator. We assume that the statistics of the additive noise can be well-
approximated by a Gaussian distribution  m S,( ) and that f and A are already centered and
decorrelated with respect to μ and Σ, i.e., m= S --f f1 2 ( ˜ ) and = S-A A1 2 ˜, where f̃ and
Ã denote the original data and forward operator, respectively. This leads to e ~ I0, m( ) and
the following likelihood distribution

µ - - p f u f A uexp , 2like
1
2 2

2( )( ∣ ) ( )

which is a probabilistic model of the measured data f given the unknown solution u. In typical
inverse problems, solving (1) for u is ill-posed. As a consequence, the information that (2)
contains about u is insufficient to carry out robust inference and we need to amend it by
a priori information, encoded in a prior distribution p uprior ( ). Then, the total information on u
we have after performing the measurement is encoded by the conditional distribution of u
given f, the so-called a posteriori distribution. It can be computed by Bayes’ rule:

=p u f
p f u p u

p f
. 3post

like prior( ∣ )
( ∣ ) ( )

( )
( )

Figure 1 illustrates the inference process. Originating from statistical physics, Gibbs
distributions are commonly used prior models:

lµ -p u uexp . 4prior ( ) ( ( )) ( )

The functional  u( ) measures an energy of u. The use of Gibbs priors leads to

lµ - - - p u f f A u uexp . 5post
1
2 2

2( )( ∣ ) ( ) ( )

For a general introduction to Bayesian inversion we refer to [20, 28, 39] and references therein. The
recent attention on this particular inversion approach is best reflected by the recent special issue of
Inverse Problems [7], which also provides a good overview over current developments and trends.

1.2. Sample-based inference

While the posterior p u fpost ( ∣ ) represents our complete knowledge about u, Bayesian esti-
mation tries to extract the information of interest from it. Classical examples thereof include
the maximum a posteriori estimate (MAP) and the and the conditional mean estimate (CM)




ò=
Î

u p u f u u f u p u f uargmax , d , 6
u

MAP post CM post
n

ˆ ≔ { ( ∣ )} ˆ ≔ [ ∣ ] ( ∣ ) ( )

which both yield a single point estimate of u. The details on their properties and relationship
can be found in [6]. More sophisticated estimators such as conditional covariance (CCov),
conditional variance (CVar) or standard deviation (CStd) estimates try to extract higher order
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statistics of u, or try to quantify the uncertainties of u, for instance through credible region/
interval and extreme value probability estimators.

Bayesian computation refers to the practical task of computing the above estimators. For
most inversion scenarios and prior models, this involves solving high-dimensional optim-
ization or integration tasks (see (6)), or even a mix of both. In this article, we are examining
techniques that integrate p u fpost ( ∣ ) by Monte Carlo integration:

ò å»g u p u f u
K

g ud
1

, 7
i

K
i

post( ) ( ∣ ) ( ) ( )

where u i are samples of p u fpost ( ∣ ) generated by a sampling algorithm/sampler. Due to the
lack of efficient direct samplers that generate i.i.d. samples, Markov chain Monte Carlo
(MCMC) samplers need to be employed in most situations. MCMC for high dimensional
Bayesian inversion is a very active field of research, see, e.g., [1, 2, 4, 11, 12, 16, 22, 31–
33, 36–38] for some examples of recent developments. In [27], an efficient MCMC sampler
for Gibbs priors with ℓ1-norm-type energies (ℓ1-priors, see figure 1(b)) was presented:

lµ -  p u D uexp . 8T
prior 1( ) ( ) ( )

Such energies are commonly used to impose sparsity constraints on the solution of high
dimensional image reconstruction problems, a direction of research closely related to the
notion of compressed sensing [8, 14, 15]. A detailed discussion of sparsity as a priori
information in Bayesian inversion can be found in [28]. The sampler developed in [27]
belongs to the class of single component (SC) Gibbs samplers, which sample p u fpost ( ∣ ) by
subsequently sampling along the conditional, SC densities -p u u f,j jpost ( ∣ ):

Algorithm 1. (SC-Gibbs sampling)

Define an initial state u0, a burn-in size K0 and sample size K. For = ¼ +i K K1, , 0 do:
A1.1 Choose a component j (deterministic or random).
A1.2 Draw ~ -p u fy ,jpost ( · ∣ ).
A1.3 Set =+u yj

i 1 , and =-
+

-u uj
i

j
i1 .

Discard =ui
i
K

0
0{ } and use = +

+ui
i K
K K

10
0{ } as a sample of p u fpost ( ∣ ).

Figure 1. (a)–(b) Illustration of Bayesian inversion with different priors. Depicted are
the level sets of likelihood (green, dashed), prior (red, dotted) and resulting posterior
distribution (blue, solid). Maximal and expected values of the corresponding
distributions are depicted by a star and a bullet, respectively. (c) Example of an
MCMC chain generated by an SC Gibbs sampler (blue bullets connected by dashed
lines) to sample a bivariate target density (level sets shown as red solid lines).
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We have used ¼ ¼- - +x x x x x, , , , ,j j j n
T

1 1 1≔ ( ) to denote a vector with all components of
x except for xj. An illustration of Gibbs sampling is given in figure 1(c). In [27], this SC-
Gibbs sampler was compared to the popular Metropolis–Hastings (MH) sampler: for the
computational scenarios considered and the evaluation performed, it was demonstrated that in
contrast to the MH, SC-Gibbs sampling gets more efficient when the level of sparsity or the
dimension of the unknowns is increased. Thereby, it became possible to carry out sample-
based inference with ℓ1 priors in challenging inverse problems scenarios with >n 106:

• The theoretical predictions about the infinite dimensional limits of total variation (TV)
priors posed in [10, 24] could be verified numerically (see [28]).

• Computed tomography (CT) inversion with Besov space priors (see [18, 21]) was
examined for simulated and experimental data (see [6, 28]).

• The numerical results stimulated the development of new theoretical ideas about the
relationship of MAP and CM estimates (see [6, 19]).

1.3. Previous limitations

As the sampler developed in [27] relies on a direct sampling of the SC densities, namely the
inverse cumulative distribution method (iCDF ), we will call it the direct ℓ1 sampler from now
on. While the direct ℓ1 sampler works well in the applications described above, it suffers from
several limitations. To understand them, we recall that an efficient SC-Gibbs sampler
needs to:

(SC1) Compute the conditional, SC densities in an explicit, parameterized form in a
fast way.

(SC2) Employ a fast, robust and exact sampling scheme for the parameterized form of the
SC densities.

In order to best fulfill (SC1) and (SC2), the direct ℓ1 sampler was designed for a very
particular setting: firstly, in addition to relying on a linear forward map (1) and a Gaussian
noise model (2), it assumes that the operator Î ´D n h in (8) can be diagonalized (synthesis
priors): there is a basis matrix V such that D VT is a diagonal matrix Î ´W h n. The direct ℓ1
sampler then samples over the coefficients of x=u V in this basis:

x x l xµ - - -   p f f AV Wexp . 9post
1
2 2

2
1( )( ∣ ) ( )

This excludes the use of frames or dictionaries for D. Secondly, it only works for the ℓ1 norm
as a prior energy: a straight-forward extension of iCDF to examine more general ℓp

q-prior of
the form lµ -  p u D uexp T

p
q

prior ( ) ( ) is not possible. This excludes the interesting cases of
= <q p p, 1, which leads to a non-convex energy but also p=1, >q 1, which was

examined in [10]. Finally, a lot of interesting priors such as the popular isotropic TV prior in
2D/3D or related, bloc/structured sparsity priors have a more involved structure than (8) and
cannot be treated with iCDF in an efficient and robust way as well. In all the above cases,
including additional hard constraints, Îu , where  is the feasible set of solutions is often
advantageous:

⎧⎨⎩


µ =
Î

p u p u u
p u u ,if

0 otherwise.
10prior prior

prior( ) ˜ ( ) · ( )
˜ ( )

( )

While such constraints have proven to be very useful as a priori knowledge [3, 40], their
inclusion into the direct ℓ1 sampler in a numerically stable way is cumbersome.
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1.4. Contributions and structure

For most of the limitations discussed above, the main problem is not to fulfill (SC1), but to
fulfill (SC2) by using a direct sampler such as iCDF for the parameterized SC densities in step
A1.2. In this article, we sample from them by using a generalization of slice sampling that
utilizes their specific structure instead and demonstrate the effectiveness of this replacement in
different computed examples. This allows us to perform sample-based Bayesian inference in
high-dimensional scenarios with the priors described above for the first time.

The paper is structured as follows: in section 2, we first derive the SC densities for the
priors discussed above. Then, we introduce the basic and generalized slice sampler and
discuss how to integrate it into the SC Gibbs sampler for Bayesian inversion. Section 3
contains computed examples and section 4 closes with a discussion. Several technical details
are covered in section appendix A.

2. Sampling methods

For general and comprehensive introductions to MCMC sampling methods, we refer
to [26, 34].

2.1. SC posteroir densities

In this section, we briefly derive the SC posterior densities for the examined prior models in a
simple, parameterized way, see (SC1). We first discuss the case where a basis ¼v v, , n1{ } helps
to represent x x= åu v Vl l ≕ such that x x-p f,j jpost ( ∣ ) can be described using as few para-
meters as possible. Once such a basis is found, the part of x x-p f,j jpost ( ∣ ) coming from the
likelihood is easy to derive: we define Y AV≔ and j x- Y- -j f j j( ) ≔ . Then, we find that

x x x x

j x x j x

- = - = - Y = - Y + Y

= - Y µ Y + Y -
x

- -       

   

f Au f AV f f

j i ax bx, 11

j j j j

j j
j

j j j
T

j

1
2 2

2 1
2 2

2 1
2 2

2 1
2 2

2

1
2 2

2 1
2 2

2 2 2

( )

( ) ( ) ≕ ( )

where we introduced xx j≔ , Y a j
1

2 2
2≔ , and j xY = Y - Y Y- -b j fj

T
j
T

j
T

j j≔ ( ) ( ) to ease

the notation for the following sections. Note that while a and Y fj
T can be precomputed,

xY Y- -j
T

j j( ) relies on the current state of the ξ-chain and has to be computed in every step of
the sampler. Especially for complicated forward operators in high-dimensional scenarios, this
operation is the computational bottleneck of SC Gibbs samplers. Therefore, a careful,
scenario-dependent implementation is important to obtain a fast sampler.

Now we proceed to determine V and the part of x x-p f,j jpost ( ∣ ) coming from the prior.
The energies of the ℓp

q priors can be written as

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ å å å x= =u D u D v . 12

k

h

k
T p

q
p

k

h

l
k
T

l l

p
q
p

( ) ∣ ∣ ( ) ( )

To obtain simple conditional densities for all xj, we thus have to choose V such that

¹D v u k umax , where card 0 , 13
l

T
l k0 0∣ ∣ ∣ ∣ ≔ ({ ∣ }) ( )

is as small as possible. We first consider the special but important case of Î ´DT h n having
full rank and h n. This includes the case where the columns D are elements of a basis, and
thereby, the class of Besov priors, see [6, 13, 18, 21, 23] and the TV prior in 1D with
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Neumann boundary conditions, which we will use in the computational studies. Due to the
full rank, we can choose ¼v v, , h1 such that =D v eT

l l for = ¼l h1, , , and ¼+v v, ,h n1 such
that =D v 0T

l for = + ¼l h n1, , (for D being a basis, we have V=D). With this
transformation, (12) simplifies to:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ å åx x x xµ = +

¹
. 14

l

h

l
p

j
p

l j

h

l
p

q
p

q
p

( ) ∣ ∣ ∣ ∣ ∣ ∣ ( )

Defining xx j≔ as above, we can write the conditional SC posterior density as:

 ål xµ - + - +
¹

p x ax bx c x d c dexp , , , 15p q p
j h

l j

h

l
p2( ) ( (∣ ∣ ) ) ≔ ≔ ∣ ∣ ( ){ }

which simplifies to

lµ - + - p x ax bx c x cexp , , 16p
j h

2( ) ( ∣ ∣ ) ≔ ( ){ }

for ℓp
p priors. In the case where D cannot be diagonalized, an explicit form is given by

⎛

⎝
⎜⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞

⎠
⎟⎟⎟åµ - + - -

Î
p x ax bx c d x eexp , 17

k D v
k k

p

q
p

2

supp T
j

( ) ∣ ∣ ( )
( )

l x- -c d D v e D Vwhere , , . 18j h k
T

j k k
T

j j k≔ ≔ ( ) ≔ ( ) ( ){ }

Various generalizations of the standard ℓp
q priors with D uT

p
q -type energies first compute the

ℓ2-norm of a local feature of u, e.g., of its gradient, and then measure the global ℓp
q energy of

these local ℓ2 norms In this article, we will only discuss one prominent example thereof,
which is given by the isotropic TV prior in 2D: if we assume that u represents an N×N
discrete image, we can index the components of u as u k l,( ) with = ¼k N1, , , = ¼l N1, , ,
=n N 2. We can then use forward differences in both spatial directions to define

 å= - + -+ +u u u u u , 19i
k l

n

k l k l k l k lTV
,

1, ,
2

, 1 ,
2( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )

with appropriate additional boundary conditions. The local nature of the  uiTV( ) allows us to
derive a simple parameterization of the SC densities in the pixel basis =V In. Every
x = uj k l,( ) only appears in three terms of the energy:

 µ - + -

+ - + -

+ - + -

- + +

- - + -

+ - - -

u u u u u u

u u u u

u u u u .

20

i k l k l
k l

k l k l k l k l

k l k l k l k l

k l k l k l k l

TV , ,
,

1, ,
2

, 1 ,
2

, 1,
2

1, 1 1,
2

1, 1 , 1
2

, , 1
2

( ∣ ) ( ) ( )

( ) ( )

( ) ( )

( )
( ) ( )

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

Therefore, we can write the conditional SC posterior as

⎛
⎝⎜

⎞
⎠⎟åµ - + - - +

=
p x ax bx c d x e gexp , 21

k
k k k

2

1

3
2( ) ( ) ( )

with appropriately computed parameters Îd 0, 1, 2k { }, ek, g 0k .
The difficulty of incorporating additional hard constraints (10) depends on the shape of

the feasible set  and the transformation V applied. In the following, we assume that they lead
to a feasible (semi-)finite interval lb ub,[ ] to which the continuous densities computed above
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can be restricted to. In the case of  being convex, such an interval always exists and there are
computationally efficient ways to compute it.

2.2. MCMC-within-Gibbs sampling

The direct ℓ1 sampler is sampling (16) with p=1 by the iCDF method using an explicit form
of the inverse CDF. For ¹p q, 1 or (21) this is not possible and one would need to integrate
the CDF numerically to use the iCDF method as a SC density sampler. However, already for
p=1, a major technical difficulty was to develop a numerical implementation that worked
for all possible combinations a b c, ,( ): the first implementations broke down when the
dimension n of the problem was increased and the ill-posedness became more severe. The
reason was that combinations of a b c, ,( ) corresponding to extremely degenerate SC densities
appeared more frequently for  ¥n and in general, the variability of SC densities grows.
This trend will be an even more severe problem when one cannot find an explicit form of the
inverse CDF and needs so resort to numerical integration. But also replacing the iCDF
method by a univariate MCMC sampler (MCMC-within-Gibbs sampling) becomes challen-
ging: The most commonly used Metropolis-within-Gibbs sampler, which utilizes an easy-to-
implement MH sampler with a univariate Gaussian proposal  kx,( ) (where x is the current
state) for the SC sampling step A1.2 will not work properly in such a situation: for an MH
sampler to be efficient, finding a value of κ leading to an optimal acceptance rate is essential.
However, the large variations in-between SC densities renders an automatic tuning of a single
κ impossible. The alternative would be to tune and use a different kj for every component j,
but the tuning procedure would require n times more samples than tuning one κ for all
components. Thereby, the resulting algorithm would be more like an adaptive SC–MH
sampler than a Gibbs sampler [17, 25].

2.3. Slice sampling

Slice sampling transfers the automatic adaptation of Gibbs sampling to univariate densities.
While the basic version to sample arbitrary densities in a ‘back-box’ fashion was proposed in
[30], we follow the presentation given in [34], which leads to a general version in which we
can utilize several properties of our specific posterior densities to derive an efficient SC
sampler. The starting point for slice sampling is the Fundamental theorem of Simulation,
which states that sampling from a distribution p x( ) is equivalent to sampling uniformly from
the area under the graph of p x( ):  x z z p x, 0p ≔ {( )∣ ( )}. This simple observation is the
basis of accept–reject samplers, a widely used class of samplers which draw uniform samples
x z,( ) from a region enclosing p and only accept the sample if it fulfills z p x( ).
Figures 2(a) and (b) illustrate this principle. Slice sampling utilizes this principle in another
way: it samples the auxiliary, bivariate density µ p x z x z, ,p˜ ( ) ( ) by a Gibbs sampler and
only keeps the x samples, see figure 2(c):

Algorithm 2. (Basic slice sampling)

For a univariate density p x( ), define an initial state x0, a burn-in size K0 and a sample size K. For
= ¼ +i K K1, , 0 do:
A2.1 Draw y uniform from p x0, i[ ( )] (vertical move).
A2.2 Draw +xi 1 uniform from S z p z yy ≔ { ∣ ( ) } (horizontal move).

Discard =xi
i
K

0
0{ } and use = +

+xi
i K
K K

10
0{ } as a sample of p x( ).
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The difficulty of this basic slice sampling scheme as developed in [30] is determining S y

in Step A2.2. For the SC densities we want to sample from, determining S y explicitly is not
always feasible, and robust numerical approaches to compute it are difficult to design. For
instance, using non-convex prior energies such as in ℓp

q priors with = <q p p, 1 leads to
multi-modal SC densities and Sy may not be a single interval. Therefore, we will use a
generalization of algorithm 2: slice sampling is a variant of auxiliary variables algorithms that
introduce an additional variable y with a suitable density p y x( ∣ ). Then, samples x y,i i( ) from

=p x y p x p y x,( ) ( ) ( ∣ ) are obtained by a Gibbs sampler, which relies on p y x( ∣ ) and p x y( ∣ ),
and only the x i are kept. For the basic slice sampler, p y x( ∣ ) is chosen as

= p y x
p x

y
1

, 22p x0,( ∣ )
( )

( ) ( ){[ ( )]}

i.e., as a uniform distribution on p x0, i[ ( )]. We then have

= p x y p x
p x

y,
1

23p x0,( ) ( )
( )

( ) ( )[ ( )]

µ = p x y y x . 24p x x p x y0,( ∣ ) ( ) ( ) ( ){[ ( )]} { ∣ ( ) }

If p x( ) factorizes to µp x p x p x1 2( ) ( ) ( ) we can define

= p y x
p x

y
1

, 25p x
2

0, 2
( ∣ )

( )
( ) ( ){[ ( )]}

which leads to

= = = p x y p x p y x p x
p x

y p x y,
1

, 26p x p x
2

0, 1 0,2 2
( ) ( ) ( ∣ ) ( )

( )
( ) ( ) ( ) ( ){[ ( )]} {[ ( )]}

= p x y p x x S z p z y, with . 27S
y

1 2 2
y

2
( ∣ ) ( ) ( ) ≔ { ∣ ( ) } ( )

The corresponding sampler takes the form:

Figure 2. An illustration of accept–reject methods and slice sampling: (a) to sample
from the density p x( ) (red line), uniform samples x y,i i( ) (blue and green dots) are
generated in a region enclosing its graph. All samples fulfilling y p xi i( ) (blue dots)
are accepted. (b) Histogram computed from the x values of all accepted samples. (c)
Slice sampling. The x coordinates of the blue dots are samples of p x( ), while the
dashed black line illustrates the path of the sampler on p.
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Algorithm 3. (Slice sampling)

For a univariate density µp x p x p x1 2( ) ( ) ( ), define an initial state x0, a burn-in size K0 and sample size
K. For = ¼ +i K K1, , 0 do:
A3.1. Draw y uniform from p x0, i

2[ ( )] (vertical move).
A3.2. Draw +xi 1 from p x xS1

y
2

( ) ( ) (weighted horizontal move).
Discard =xi

i
K

0
0{ } and use = +

+xi
i K
K K

10
0{ } as a sample of p x( ).

For all the methods presented in this section, p x( ) does not need to be normalized. Also
note that for simplicity, we refer to algorithm 3 as the ‘slice sampler’, hopefully without
causing confusion with the one presented in [30], which was included as the ‘basic slice
sampler’ (algorithm 2) here for completeness of the presentation.

2.4. Slice-within-Gibbs sampling for Bayesian inversion

The implicit variable split introduced in algorithm 3 is appealing if =S z p z yy
2 2{ ∣ ( ) } is a

single interval and easy to determine and p x1 ( ) constrained to an interval is easy to sample
from. For the SC posterior densities we consider here, this holds if we split into likelihood
plus hard constraints, i.e., = - + p x ax bx xexp lb ub1

2
,( ) ( ) ( )[ ] , and prior parts p x2 ( ). As the

prior terms are unimodal and some even symmetric to zero, S y
2 is a single interval and can be

determined easily: for (15), we have µ - +p x c x dexp p q p
2 ( ) ( (∣ ∣ ) ) and

⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟ - + - -c x d y x

y

c
dexp

log
. 28p q p

p q p1

( (∣ ∣ ) ) ⟺ ∣ ∣ ( ) ( )

For the TV prior, (21), we need to compute S y
2 numerically. However, as the energy of p x2 ( )

is convex, S y
2 is a single interval given by the solutions to =p x y2 ( ) . As the energy of p x2 ( )

is also piecewise smooth and can be bounded from below, we can easily find starting points
for fast, derivative-based root-finding-algorithms. The details are given in appendix A.2. A
generalization to other convex, piecewise-smooth energies, such as (17) with suitable p q, , is
straight-forward ( = =p q 1 is a special case as =p x y2 ( ) can be solved explicitly by a
simple scheme). However, if D VT is dense the number terms in the prior energy is large and
this step will become the computational bottleneck of the whole solver. Fortunately, many
relevant operators DT such as finite difference operators or dictionaries composed of local
patches are sparse in the original basis, =V In.

The likelihood part p x1 ( ) is a Gaussian with m = b a2SS ( ) and s = a1 2SS
2 ( ), truncated

to the interval Ç=I S lb ub,y
2 [ ]. For sampling truncated Gaussians, various direct samplers

were developed. Our implementation relies on a modified, more robust, version of [9]. Note
that if the sampler is initialized in a feasible point Îu0 , the probability of I being empty or
a single point is zero in theory. In practice, finite precision can lead to =I x{ ˜}, in which case
one has to set =+x xi 1 ˜.

Using the slice sampler presented above to sample from x-p f,jpost (· ∣ ) in step A1.2 will
be called slice-within-Gibbs sampling. In principle, it will generate a full Markov chain

x x~= +
+

-p f, , 29j
i

i K
K K

j1 post
s

s s

s s

,0

,0{ } (· ∣ ) ( )

where we subscripted all variables belonging to the inner slice sampler with s. Practically, we
only need one sample from x-p f,jpost ( · ∣ ). We will always initialize the slice sampler with the
current value xi of the component we want to update. Then, we only have to determine the
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length of the burn-in phase Ks,0 and choose the first sample of the real run as a sample of
x-p f,jpost ( · ∣ ), i.e., =K 1s .

The correctness and convergence of the slice-within-Gibbs sampler can be established by
combining the properties of the slice sampler (algorithm 3) and the general Gibbs sampler
(algorithm 1), which are discussed in [34].

3. Computed examples

3.1. Computational scenarios

‘Boxcar’—image deblurring in 1D. For the initial evaluation studies, we use a simple image
deblurring scenario in 1D that was adopted from [24] and also used in [27]. It is a
simplification of the task to reconstruct a spatially distributed intensity image that is known to
consist of piecewise homogeneous parts with sharp edges: the indicator function of ⎡⎣ ⎤⎦,1

3

2

3
is

to be recovered from its integrals over m=30 equidistant subintervals of 0, 1[ ], corrupted by
noise with m = S = - I0, 10 m

3 (see figure 3). The reconstruction is carried out on the grid
=xi

n i

256
, = ¼i n1, , , with n=255 and the forward operator is discretized by the

trapezoidal quadrature rule applied to that grid. Further details can be found in section 3.1.1
of [27].

The prior operator DT will be given by the forward difference operator with Neumann
boundary conditions:

= - = - = ¼ -+ +D e e D u u u i n, , 1, , 1. 30i i i i
T

i i1 1⟹ ( )

DT has full rank = -h n 1 and Î ´V Rn n given by

⎧⎨⎩
=V

i j1 if ,
0 else

31i j, ( )( )

is a basis matrix V such that D VT is a diagonal matrix. We will refer to priors based on this
operator as increment priors. For the ℓ1 increment prior, i.e., the conventional TV prior, we
can also use the direct ℓ1 sampler to sample from the posterior. By this, we can validate the
approximation of the direct SC sampling via iCDF by the slice sampler proposed here. We
will refer to this setting as the ‘Boxcar’ scenario in the following.

‘Phantom-CT’—CT inversion in 2D. We consider an example of 2D sparse angle CT to
demonstrate the potential of the proposed sampler for real-world applications. An
approximate model of CT is given by the Radon transform : for a 2D function

Figure 3. One-dimensional image deblurring scenario (‘Boxcar’).
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Î -¥u L 1, 12
2([ ] ), it computes integrals along straight lines which are parametrized by the

angle θ of their normal vector and their (signed) distance s to the origin:

 ò

ò

q

q q q q

=

= + - +

q

¥ ¥

-¥

¥
¥

u s u x t y t l t

u t s t s t

, , d

sin cos , cos sin d . 32

l s,
[ ]( ) ( ( ) ( )) ( )

( ) ( )

( )

In sparse angle tomography, only a small number of such angular projections can be
measured. In our study, we chose only =qm 45 angles, evenly distributed in p0,[ ). In
addition, for a given angle qi, we practically only measure the integrals of  q¥u s,i[ ]( ) over
small s-intervals representing an array of =m 500s equal sized sensor pixels. In total, this
leads to m= =qm m 18.000s · measurements. The forward operator A corresponds to the
exact discretization of this measurement with respect to the pixel basis: all the operations
involved in the measurement can be computed explicitly for indicator functions of rectangular
sets. Further details of this step can be found in section 2.3 in [28].

The unknown function ¥u to recover is a slightly scaled version of the Shepp–Logan
phantom [35], a toy model of the human head defined by 10 ellipses. Figure 4(a) shows ¥u
and figure 4(b) the measurement data generated by discretizing ¥u with a 768×768 pixel
grid. We will refer to this scenario as ‘Phantom-CT’.

3.2. Accuracy assessment

To validate that the developed slice sampler accurately reproduces the distributions it is
supposed to sample from, the convergence of the sample histograms to the underlying SC
densities was checked for visually. Various (random) combinations of coefficients for the
different SC densities were tested; see figure 5 for an example of such a comparison.

Figure 4. ‘Phantom-CT’ scenario. (a) Unknown function to recover. (b) Clean
measurement data (‘sinogram’) for =m 500s , =qm 45. (c) Colormap used for all
visulizations in this scenario, 0 corresponds to black.
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3.3. Efficiency assessment

Once the accuracy of the slice sampler is established, the next crucial question is whether its
use within a Gibbs sampler is efficient: in algorithm 1, we ideally want to replace the current
values of the component j, ui by a values that is both distributed following -p u f,jpost ( · ∣ ) and
statistically independent of the current value ui. While direct SC samplers, such as the iCDF,
naturally fulfill these requirements, SC samplers relying on MCMC chains initialized with ui
fulfill them only asymptotically, in the limit  ¥Ks,0 . Using a fixed chain size Ks,0 will
inevitably introduce additional correlation between subsequent samples and lower the sta-
tistical efficiency of slice-within-Gibbs samplers compared to Gibbs sampling relying on a
direct sampler for the SC densities. In the following, we will asses this loss of statistical
efficiency by autocorrelation analysis.

Autocorrelation analysis. Evaluating samplers in general rather than for a specific aim is
a difficult task [26]. For the sake of a concise presentation, a detailed introduction and
discussion is omitted here but can be found in section 4.1.6. of [28]. In this study, we will
only examine the autocorrelation functions of the MCMC chains projected onto a test
function Îv n, i.e., of the chain

== = +
+g v u, . 33i

i
K i

i K
K K

1 10
0{ } {⟨ ⟩} ( )

In the ‘Boxcar’ scenario, v is given as the largest eigenvector of the (pre-computed) posterior
covariance matrix while in the ‘Phantom-CT’ scenario, it is the indicator function of the area

Figure 5. (a) Histogram (blue bars) of the slice sampler compared to targeted SC
density (red line) given by (16) with =p 0.8. The parameters a and b were picked from
a run of the direct ℓ1 sampler applied to a 2D image deblurring scenario (described in
[27]) and c was matched to the regularization parameter used therein.
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defined by - - ´0.32, 0.12 0.12, 0.32[ ] [ ] (this area corresponds to the green box shown in
figures 7(e)–(f)). To extract a quantitative measure from the autocorrelation functions, we will
estimate their integrated autocorrelation time tint by the approach presented in [41]. In all
computed examples, the component j to update in step A1.1 of algorithm 1 is drawn
uniformly at random, (random scan Gibbs sampler) and a sub-sampling rate (SSR) of n is
used, i.e., only every nth sample of the chains generated by algorithm 1 is actually stored and
tint refers to the samples of this thinned chain. This means that, on average, we update all n
components of Îu n between two steps of the chain ( full sweep). In each scenario, the
samplers were given a large burn-in time K0 and K was chosen large enough to obtain
sufficiently tight error bounds on tint [41].

Results. When using a conventional TV prior ( = =p q 1) in the ‘Boxcar’ scenario, the
direct ℓ1 sampler using the iCDF method can be used as a reference to which the slice
samplers can be compared to: the tint obtained by the direct sampler is a lower bound for all
slice samplers. Table 1 lists the results. One can observe that already for small MCMC chain
length Ks,0, the differences between direct and slice sampler in terms of statistical efficiency
are negligible in practice. Similar examinations using ℓ2 priors (where, again, a direct sampler
can be used as a reference) showed that in this case, significant differences vanish for even
smaller values of Ks,0 (results omitted here).

Tables 2(a), (b) and (c) show the results of similar examinations for an ℓp prior with
=p 1.2, an ℓp

q prior with p=1, q=10 and the isotropic TV prior in the 2D ‘Phantom-CT’
scenario (using = ´n 129 129), respectively. While we do not have a direct sampler as a
reference here, one can clearly see that tint is converging to a limit for increasing Ks,0. In some
cases, even using =K 0s,0 , i.e., only performing one step of the slice sampler, might be
sufficient.

Computational complexity. In typical large scale inverse problems such as the one
examined in section 3.5, the computational bottleneck is to compute the coefficients of the SC
densities, not the process of sampling from them. Therefore, the computational complexity of
the slice sampler is not a critical aspect of the whole algorithm. However, to give an indi-
cation of how increasing Ks,0 effects the total run time, table 3 compares the run time of the
slice-within-Gibbs sampler to the direct ℓ1 sampler and table 4 lists the run times of the slice-
within-Gibbs sampler for the TV prior in 2D. While the implementation of the slice sampling
part is more complicated in this situation (see appendix A.2), we see that even for a moderate
sized scenario ( =n 2562) it does not significantly effect the run time. Therefore, one does not
have to compromise statistical efficiency by choosing a small Ks,0 to obtain a better com-
putational efficiency.

3.4. Application to the ℓp increment prior

Problems with the conventional TV prior (see [24] and the overview in section 5.2.2 in [28])
stimulated research into alternative, edge-preserving prior models. Here, we exemplify how
the new slice-within-Gibbs sampler can be used to investigate such general questions in

Table 1. Comparison of tint for direct and slice-within-Gibbs samplers using different
burn-in lengths for the slice sampler. The ‘Boxcar’ scenario and a TV prior
( = =p q 1) with l = 400 is used and = ´K 5 106, = nSSR .

=K 10s,0 =K 20s,0 =K 40s,0 =K 100s,0 =K 200s,0 Direct

231.4±8.6 149.2±4.6 109.4±2.9 102.0±2.6 101.3±2.6 97.8±2.5
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Bayesian inversion: We use it to compute both MAP and CM estimates for the ℓp increment
prior with p decreasing from p=2 (Gaussian prior) to p=1 (TV prior) and even below
<p 1 (non-logconcave prior). While the computation of the CM estimates is straight-for-

ward, computing MAP estimates is done by using the sampler within a simulated annealing
(SA) scheme, a stochastic meta-heuristic for global optimization. The details and an eva-
luation of using SA together with the proposed SC Gibbs samplers can be found in sections
4.2.4 and 5.1.5 in [28]. In both cases, =K 105 samples were drawn with SSR = n.

The results of computing MAP and CM estimates for different values of p are shown in
figure 6. Here, λ was chosen such that all likelihood energies are equal and that l = 200 for
p=1. The results suggest that using <p 1 leads to superior results for both MAP and CM
estimates compared to p=1. The MAP estimate is closer to the real solution as it is both
sparser in the increment basis and the contrast loss is reduced. The CM estimate for =p 0.8
looks way more convincing compared to those for p 1: it has clear pronounced edges that
separate smooth, denoised parts. However, using the slice-within Gibbs samplers for <p 1
needs to be examined more carefully: while the results are visually convincing, we cannot be
sure that the sampler explored the whole, possibly multimodal posterior and did not get stuck
in a single mode.

3.5. Application to CT inversion with TV priors

Figure 7 shows MAP and CM estimates for the ‘Phantom-CT’ scenario using an isotropic TV
prior with Neumann boundary conditions (19). Here, the MAP estimates were computed with
the alternating direction method of multipliers [5]. In the Gibbs sampler, oriented over-
relaxation (see [29] and section 4.3.1. in [28]) was used to accelerate convergence and

= ´ ´K 2.5 10 , 10 , 5 104 4 3 samples were drawn for =n 64 , 128 , 2562 2 2, respec-
tively (SSR = n).

Non-negativity constraints. As the slice-within-Gibbs sampler can easily incorporate
additional hard constraints (10), it can be used to quantify their effect on the posterior
p u fpost ( ∣ ). Figure 8 shows CM and CStd estimates computed with or without non-negativity
constraints, u 0. While the CM estimates look very similar, the CStd estimates reveal that

Table 2. Comparison of tint for slice-within-RSG samplers using different burn-in
lengths for the slice sampler. The ‘Boxcar’ scenario is used in (a) with an ℓp increment
prior with =p 1.2, l = 400 and in (b) with an ℓp

q increment prior with p=1, q=10,

l = 0.02. In both cases = ´K 2 106 samples were drawn. In (c), the ‘Phantom-CT’
scenario with an isotropic TV prior with l = 500 is used and = ´K 2 105 samples
were drawn.

(a) =K 1s,0 =K 2s,0 =K 4s,0 =K 8s,0 =K 16s,0 =K 32s,0 =K 64s,0

41.9±1.1 33.3±0.8 23.4±0.5 18.3±0.3 15.8±0.4 14.6±0.3 14.8±0.3

(b) =K 1s,0 =K 2s,0 =K 4s,0 =K 8s,0 =K 16s,0 =K 32s,0 =K 64s,0

638±46 425±26 307±16 198±9 161±6 155±7 135±6

(c) =K 0s,0 =K 1s,0 =K 2s,0 =K 4s,0 =K 8s,0 =K 16s,0 =K 32s,0

6.0±0.3 5.3±0.3 5.3±0.3 5.6±0.3 5.2±0.3 4.9±0.3 5.2±0.3
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the non-negativity constraints lead to a significant reduction of the posterior variance in some
regions.

Gradient estimates. we further present one example of how the samples of u generated by
the sampler can be used to compute statistics and uncertainties of a feature of u (see
section 1.2): in figure 9(a), we computed the CM estimate of the gradient of the image u

 ò =    u f u p u f ud 342 2 post[ ∣ ] ( ∣ ) ( )

and figure 9(b) shows the corresponding CStd estimate.

Figure 6. MAP and CM estimates for the 1D ‘Boxcar’ scenario using the ℓp increment
prior and n=63. The true function to recover (gray line plot) is denoted by ¥u ,† .

Table 3. Total run time of the slice-within-Gibbs sampler using different burn-in
lengths divided by the run time of the direct ℓ1 sampler. The ‘Boxcar’ scenario and an ℓp

increment prior with =p 1.2, l = 400 is used.

=K 10s,0 =K 20s,0 =K 40s,0 =K 100s,0 =K 200s,0

1.30 1.38 1.48 1.75 2.20

Table 4. Total run time of the slice-within-Gibbs sampler using different burn-in
lengths Ks,0 divided by the run time for =K 0s,0 . The ‘Phantom-CT’ scenario
( = ´n 256 256) and a TV prior (p=1) with l = 500 is used.

=K 0s,0 =K 1s,0 =K 2s,0 =K 4s,0 =K 8s,0 =K 16s,0 =K 32s,0

1.00 0.98 1.04 1.03 1.05 1.07 1.11
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Figure 7.MAP and CM estimates for the ‘Phantom-CT’ scenario using an isotropic TV
prior with l = 500, computed with increasing spatial resolution. In the highest
resolution, a zoom inset is added.
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4. Discussion and conclusions

In this article, we presented and evaluated a new MCMC sampler that allows us to carry out
sample-based Bayesian inversion for a wide range of scenarios and prior models. It is based
on the extension of the SC Gibbs-type sampler developed in [27] by a problem-specific
adaptation and implementation of generalized slice sampling and enables efficient posterior
sampling in high-dimensional scenarios with certain priors for the first time.

The results in sections 3.2 and 3.3 show that using generalized slice sampling to sample
from the one-dimensional conditional, SC densities can lead to a fast, robust and accurate

Figure 8. Influence of inculding non-negativity constraints on CM and CStd estimates
in the ‘Phantom-CT’ scenario using an isotropic TV prior with l = 50 and a spatial
resolution of = ´n 256 256. A zoom inset is added and both CM and both CStd
estimates share the same color scale.
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posterior sampler for the inverse problems scenario (1) and is therefore an attractive option
whenever a fast direct sampler such as iCDF is not available. The computed results in
section 3.4 exemplified the use of the new slice-within-Gibbs sampler to examine recent
topics in Bayesian inversion and section 3.5 demonstrated how it can lead to interesting
results for Bayesian estimation in challenging, high-dimensional inverse problems scenarios.
In particular, we examined that TV prior model in 2D: the theoretical analysis of the TV prior
carried out, e.g. in [23, 24], is restricted to 1D, only, and, to the best of our knowledge, no
theoretical results are available for higher dimensions, yet. The development of the slice-
within-Gibbs sampler now enabled us to examine the use the TV prior for the important
inverse problem scenario of CT inversion in 2D, for the first time. The results show that,
contrary to the 1D case, the CM estimates seem to get smoother for a constant value of λ as
the resolution increases. This observation could be the starting point for a new theoretical
analysis and has to be examined in higher spatial dimensions by computational studies.

More generally, while our results and those of others (see section 1.2) have demonstrated
that sampling high-dimensional posterior distributions is feasible for many important inverse
problems scenarios nowadays, an important future challenge lies in extracting the information
of interest from the samples generated: while we demonstrated, e.g., how to compute CStd
estimates to examine how the posterior variance is influenced by non-negativity constraints
(see figure 8) or estimates of a feature g u( ) of u (see figure 9), we did not discuss how to
interpret the corresponding results. This requires a concrete application and objective and will
be topic of future investigations based on the methods presented here.

Related to the last point, we only used simulated data scenarios in this study to focus on
the sampling algorithm. The application to experimental CT data will be the subject of a
forthcoming publication covering more general aspects of Bayesian inversion in practical
applications (see section 5.3. in [28]). Furthermore, only prior models based on ℓp

q-norms
were considered here, while the sampler can, in principle, be implemented for more general
prior models. A more fundamental limitation and future challenge is the current restriction to

Figure 9. CM and CStd estimates of  u 2 for the ‘Phantom-CT’ scenario using an
isotropic TV prior with l = 50, non-negativity constraints and a spatial resolution of
= ´n 256 256. A zoom inset is added.
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linear forward maps (1) and Gaussian noise models (2). Both nonlinear forward maps and
non-Gaussian noise models typically conflict with condition (SC1), i.e., they make it very
difficult to find an explicit parameterization of the SC densities. In addition, problems related
to using SC-Gibbs sampling for multimodal posteriors (see section 3.4) may occur as well.

Code to reproduce all the computed examples will be provided as part of the release of a
Matlab-based toolbox for Bayesian inversion.
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Appendix A. Details of the implementation

A.1. Computation of the likelihood coefficients

To implement the SC Gibbs sampler for the ‘Boxcar’ scenario, we compute Y = AV and pre-
compute Y a i

1

2 2
2≔ . For computing j x= Y = Y - Y Y- -b i fi

T
i
T

i
T

i i( ) ( ) , we pre-compute

Y fi
T and y i 2

2 for all i and build the n×n matrixF Y Yt≔ . Then, computing xY Y- -i
T

i i( ) can
be performed by using

x x x yY Y = F -- -   , A.1i
t

i i
t

i i i, 2
2( ) ( )[ ] [ ] (· )

which involves a scalar product of dimension n as the most expensive operation.
For the ‘Phantom-CT’ scenario, there are two possible implementations: For the image

sizes considered here (n up to 256×256) we can still compute the matrices Y = A and
F Y Yt≔ explicitly and use the same implementation as in the ‘Boxcar’ scenario (Y = A as
we stay in the pixel basis, i.e., =V In). For larger n or 3D applications, we might not be able
to store Φ or Ψ. An alternative implementation that does not require storing any matrices
uses

x x= Y - Y Y + Y b f A.2i
T

i
T

i i 2
2( ) ( )

to compute b in the following way:

• We again pre-compute Y fi
T and Y i 2

2 for all i. Then, we store the measurement that the
current state ξ would cause as fξ and initialize it by Au0. In principle, fξ is given as xY , and
can be directly computed at any time but this computation is too expensive to be
performed at every SC update.

• For a given pixel i that is to be updated, we construct Yi and compute the scalar product
Y xfi

T to update b by the above formula (note that xY - Yfi
T ( ) is just a projection of Yi

onto the current residual of x= Yxf ). With the constructed Yi and the change, di, in xi

caused by the sampling step, we can then update d= + Yx xf f i i.
• While this iterative updating of fξ is fast, inaccuracies can accumulate over time, leading
to a misfit between fξ and xY . Therefore, we compute xY explicitly every n steps and reset
fξ to this exact value.

The computational bottleneck of this procedure is to compute Yi, i.e., the Radon transform of
a pixel (or voxel in 3D). For the parallel beam geometry used here, explicit formulas relying
on basic operations that can be parallelized over the angles θ can be derived. For more
complicated beam geometries, e.g., the cone beam geometry for 3D reconstruction,

Inverse Problems 32 (2016) 115019 F Lucka

19



approximations relying on basic operations from computer graphics can be derived and
implemented very efficiently and parallelized on GPUs.

A.2. Slice sampling with TV priors

From (21), we have

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ å= - - + Î

=
p x c d x e g d gexp , 0, 1, 2 , 0 A.3

j
j j j j j2

1

3
2( ) ( ) { } ( )

and want to determine =S z p z yy
2 2{ ∣ ( ) } by solving

å= - = - +
=

A.4y p x
y

c
d x e g

log
,

j
j j j2

1

3
2 ( )( ) ⟺ ( ) ( )

where Îy p x0, 2( ( )) with probability 1 and p x 12 ( ) . Assume that e e e, ,1 2 3{ } are sorted

and define - +J x d x e gj j j j
2( ) ≔ ( ) and -h y clog≔ ( ) . Then, åJ x J xj j( ) ≔ ( ) is

convex and smooth in -¥I e,1 1≔ ( ), I e e,2 1 2≔ ( ), I e e,3 2 3≔ ( ) and ¥I e ,4 3≔ ( ). It is
monotonic in I1 and I4 and is bounded from below by å -b x d x ej j j( ) ≔ ∣ ∣. Define
* * =- +x x J x, argmin[ ] ( ) as the interval of minimizers and -x , +x as the solutions to
=y p x2 ( ). We have *<- -x x , *>+ +x x , È ÈÎ-x I I I1 2 3 and È ÈÎ+x I I I2 3 4 with

probability 1 and * * Ì- +x x e e, ,1 3[ ] [ ]. See figure A1 for two illustrations.
We will compute -x by a Newtonʼs method:

= -
-

¢- -
- -

-

-
-x x

J x h

J x
, A.5i i

i

i
1

1

1

( )
( )

( )

Figure A1. Illustration of two SC density energies for the slice sampler implementation
of the TV prior in 2D: J x( ) (blue line), b x( ) (red line) and h (green and yellow lines)
for = -e e e, , 1, 0, 11 2 3( ) ( ) and (a) = =d d d g g g, , 2, 1, 1 , , , 0, 0.5, 11 2 3 1 2 3( ) ( ) ( ) ( ),
(b) = =d d d g g g, , 1, 0, 1 , , , 0, 0, 01 2 3 1 2 3( ) ( ) ( ) ( ).
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initialized in a point -x 0 such that - -x x0 and J x( ) is smooth on - -x x,0[ ]. In each step, the
Newtonʼs method approximates J x( ) by a tangent in -

-x i 1. Due to the convexity of J x( ) and
* <- - -x x x0 , the iterates never overshoot:  - - -x x xi0 for all i. Thereby, they stay in

- -x x,0[ ] and the derivative exists. Finding such an initialization -x 0 requires some simple
considerations:

The subdifferential ¶J x( ) is given as the sum of the subdifferentials of J xi ( ) (in the set-
valued sense of addition):

⎧
⎨
⎪⎪

⎩
⎪⎪

⎧
⎨⎪
⎩⎪

⎫
⎬⎪
⎭⎪¶ =

-

- +
¹ >

- = =

J x

d x e

d x e g
x e g

d d x e g

, if or 0,

, , if and 0.

A.6j

j j

j j j

j j

j j

2( )
( )

( )

[ ]

( )

Now, let *J J emine j j≔ ( ). We can distinguish two cases:

*>h Je : in this case, we check the following conditions in sequence:
• If >h J e1( ), -x is in I1. We use the lower bound b x( ) to determine -x 0 such
that =-b x h0( ) :

å
= +

-
-x e

J e h

d
A.7

j j

0
1

1( ) ( )

As b x J x( ) ( ), and both are monotonic in I1, we have that <- -x x0 .

• Else if >h J e2( ), -x is in I2. We perform one Newton step from e1 using the
maximal subgradient in e1:

= -
-

¶-x e
J e h

J emax
A.80

1
1

1

( )
( ( ))

( )

This way, - -x x0 and Ì- -x x I,0
2[ ] , i.e., J x( ) is differentiable for all iterates.

• Else, >h J e3( ) and -x is in I3. With a similar reasoning, we set

= -
-

¶-x e
J e h

J emax
. A.90

2
2

2

( )
( ( ))

( )

For finding +x , a similar reasoning can be applied. In the locations of non-
differentiability, the minimal subgradient has to be used.

*<h Je : in this case, J x( ) is not piecewise linear (see the yellow line in figure 9(a)) and the
unique minimizer *x is not in e e e, ,1 2 3{ }. The convexity ensures that *< <- +x x x
are all either in I2 or I3. If ¶ <J emax 01( ( )) and ¶ >J emin 02( ( )) we have that *x
(and thereby -x and +x ) are in I2. Otherwise, they are in I3. As above, initial points

-x 0 and +x 0 fulfilling the conditions can be found by performing one Newton step
from the corners of the interval using the maximal/minimal subgradient.

The case *=h Je has probability zero.
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