2,135 research outputs found

    Experimental observation of nanoscale radiative heat flow due to surface plasmons in graphene and doped silicon

    Full text link
    Owing to its two dimensional electronic structure, graphene exhibits many unique properties. One of them is a wave vector and temperature dependent plasmon in the infrared range. Theory predicts that due to these plasmons, graphene can be used as a universal material to enhance nanoscale radiative heat exchange for any dielectric substrate. Here we report on radiative heat transfer experiments between SiC and a SiO2 sphere which have non matching phonon polariton frequencies, and thus only weakly exchange heat in near field. We observed that the heat flux contribution of graphene epitaxially grown on SiC dominates at short distances. The influence of plasmons on radiative heat transfer is further supported with measurements for doped silicon. These results highlight graphenes strong potential in photonic nearfield and energy conversion devices.Comment: 4 pages, 3 figure

    In situ imaging of field emission from individual carbon nanotubes and their structural damage

    Get PDF
    ©2002 American Institute of Physics. The electronic version of this article is the complete one and can be found online at: http://link.aip.org/link/?APPLAB/80/856/1DOI:10.1063/1.1446994Field emission of individual carbon nanotubes was observed by in situ transmission electron microscopy. A fluctuation in emission current was due to a variation in distance between the nanotube tip and the counter electrode owing to a "head-shaking" effect of the nanotube during field emission. Strong field-induced structural damage of a nanotube occurs in two ways: a piece-by-piece and segment-by-segment pilling process of the graphitic layers, and a concentrical layer-by-layer stripping process. The former is believed owing to a strong electrostatic force, and the latter is likely due to heating produced by emission current that flowed through the most outer graphitic layers

    Advanced imaging and spectroscopy techniques for body magnetic resonance

    Get PDF
    The aim of this thesis was to develop advanced body MR techniques that can contribute to the knowledge of the metabolic syndrome (MetS). Such techniques are important since the incidence of the metabolic syndrome is reaching pandemic proportions. We looked In the first part of this thesis, consisting of chapters 2, 3 and 4, new techniques for body MR were developed. Firstly high dielectric passive shimming was developed and applied on liver imaging to increase image quality. Furthermore, the required power was reduced by applying the passive shimming method. Secondly MR spectroscopy was optimized to reliably measure lipid levels in the heart and kidney. By looking at the various parameters and optimizing them individually very high measurement reproducibility was reached. Even though MR spectroscopy is a great tool for studying MetS the complexity of the technique hampers broad application therefore, extra emphasis was placed on the ease of use of the developed protocol. In the second part of the thesis the previously mentioned methods were applied in a more clinical setting. Nierstichting; HartstichtingLUMC / Geneeskund

    Molecular and biological interactions in colorectal cancer.

    Get PDF
    The current thesis discusses the use of molecular and biological tumor markers to predict clinical outcome. By studying several key processes in the develepment of cancer as regulation of cell motility (non-receptor protein tyrosin adesion kinases, FAK, Src and paxillin, Apoptosis (caspase-3 activity and M30 expression) and regulation of cell growth (COX-2 expression). In addition the use of selective COX-2 inhibitors for the treatment of colorectal cancer liver metastases is investigated and discussed. The main outcomes of the thesis are that combined FAK/Src immunohistochemical expression is predictive of tumor recurrence in colorectal cancer, but is not overexpressed in liver metastases. Increased tumor cell apoptosis can have a positive or a negative impact on survival and local recurrence, depending on the location of the tumor in the large bowel . In rectal cancer caspase-3 activity can be used to preoperatively select patients who will not benefit from radiation therapy. COX-2 expression in rectal cancer is only of prognostic significance in irradiated rectal cancer patients, not in non-irradiated. Liver metastases in an animal model show deminished growth in the abcence of COX-2 expression and prostaglandin production.LEI Universiteit LeidenChirurgische oncologi

    Tuning the electron-phonon coupling in multilayer graphene with magnetic fields

    Full text link
    Magneto Raman scattering study of the E2g_{2g} optical phonons in multi-layer epitaxial graphene grown on a carbon face of SiC are presented. At 4.2K in magnetic field up to 33 T, we observe a series of well pronounced avoided crossings each time the optically active inter Landau level transition is tuned in resonance with the E2g_{2g} phonon excitation (at 196 meV). The width of the phonon Raman scattering response also shows pronounced variations and is enhanced in conditions of resonance. The experimental results are well reproduced by a model that gives directly the strength of the electron-phonon interaction.Comment: 4 pages, 3 figure

    Effect of a magnetic field on the two-phonon Raman scattering in graphene

    Full text link
    We have studied, both experimentally and theoretically, the change of the so-called 2D band of the Raman scattering spectrum of graphene (the two-phonon peak near 2700 cm-1) in an external magnetic field applied perpendicular to the graphene crystal plane at liquid helium temperature. A shift to lower frequency and broadening of this band is observed as the magnetic field is increased from 0 to 33 T. At fields up to 5--10 T the changes are quadratic in the field while they become linear at higher magnetic fields. This effect is explained by the curving of the quasiclassical trajectories of the photo-excited electrons and holes in the magnetic field, which enables us (i) to extract the electron inelastic scattering rate, and (ii) to conclude that electronic scattering accounts for about half of the measured width of the 2D peak.Comment: 11 pages, 7 figure

    Highly-ordered graphene for two dimensional electronics

    Full text link
    With expanding interest in graphene-based electronics, it is crucial that high quality graphene films be grown. Sublimation of Si from the 4H-SiC(0001) Si-terminated) surface in ultrahigh vacuum is a demonstrated method to produce epitaxial graphene sheets on a semiconductor. In this paper we show that graphene grown from the SiC(0001ˉ)(000\bar{1}) (C-terminated) surface are of higher quality than those previously grown on SiC(0001). Graphene grown on the C-face can have structural domain sizes more than three times larger than those grown on the Si-face while at the same time reducing SiC substrate disorder from sublimation by an order of magnitude.Comment: Submitted to Appl. Phys. Let

    Multi-shell gold nanowires under compression

    Full text link
    Deformation properties of multi-wall gold nanowires under compressive loading are studied. Nanowires are simulated using a realistic many-body potential. Simulations start from cylindrical fcc(111) structures at T=0 K. After annealing cycles axial compression is applied on multi-shell nanowires for a number of radii and lengths at T=300 K. Several types of deformation are found, such as large buckling distortions and progressive crushing. Compressed nanowires are found to recover their initial lengths and radii even after severe structural deformations. However, in contrast to carbon nanotubes irreversible local atomic rearrangements occur even under small compressions.Comment: 1 gif figure, 5 ps figure

    Symmetry breaking in commensurate graphene rotational stacking; a comparison of theory and experiment

    Full text link
    Graphene stacked in a Bernal configuration (60 degrees relative rotations between sheets) differs electronically from isolated graphene due to the broken symmetry introduced by interlayer bonds forming between only one of the two graphene unit cell atoms. A variety of experiments have shown that non-Bernal rotations restore this broken symmetry; consequently, these stacking varieties have been the subject of intensive theoretical interest. Most theories predict substantial changes in the band structure ranging from the development of a Van Hove singularity and an angle dependent electron localization that causes the Fermi velocity to go to zero as the relative rotation angle between sheets goes to zero. In this work we show by direct measurement that non-Bernal rotations preserve the graphene symmetry with only a small perturbation due to weak effective interlayer coupling. We detect neither a Van Hove singularity nor any significant change in the Fermi velocity. These results suggest significant problems in our current theoretical understanding of the origins of the band structure of this material.Comment: 7 pages, 6 figures, submitted to PR
    • …
    corecore