96 research outputs found

    Irrelevant tactile stimulation biases visual exploration in external coordinates

    Get PDF
    Ossandón JP, König P, Heed T. Irrelevant tactile stimulation biases visual exploration in external coordinates. Scientific Reports. 2015;5(1): 10664

    Hands behind your back: effects of arm posture on tactile attention in the space behind the body

    Get PDF
    Previous research has shown that tactile-spatial information originating from the front of the body is remapped from an anatomical to an external-spatial coordinate system, guided by the availability of visual information early in development. Comparably little is known about regions of space for which visual information is not typically available, such as the space behind the body. This study tests for the first time the electrophysiological correlates of the effects of proprioceptive information on tactile-attentional mechanisms in the space behind the back. Observers were blindfolded and tactually cued to detect infrequent tactile targets on either their left or right hand and to respond to them either vocally or with index finger movements. We measured event-related potentials (ERPs) to tactile probes on the hands in order to explore tactile-spatial attention when the hands were either held close together or far apart behind the observer's back. Results show systematic effects of arm posture on tactile-spatial attention different from those previously found for front space. While attentional selection is typically more effective for hands placed far apart than close together in front space, we found that selection occurred more rapidly for close than far hands behind the back, during both covert attention and movement preparation tasks. This suggests that proprioceptive space may ‘wrap’ around the body, following the hands as they extend horizontally from the front body midline to the centre of the back

    Male-Specific Transfer and Fine Scale Spatial Differences of Newly Identified Cuticular Hydrocarbons and Triacylglycerides in a Drosophila Species Pair

    Get PDF
    We analyzed epicuticular hydrocarbon variation in geographically isolated populations of D. mojavensis cultured on different rearing substrates and a sibling species, D. arizonae, with ultraviolet laser desorption/ionization mass spectrometry (UV-LDI MS). Different body parts, i.e. legs, proboscis, and abdomens, of both species showed qualitatively similar hydrocarbon profiles consisting mainly of long-chain monoenes, dienes, trienes, and tetraenes. However, D. arizonae had higher amounts of most hydrocarbons than D. mojavensis and females of both species exhibited greater hydrocarbon amounts than males. Hydrocarbon profiles of D. mojavensis populations were significantly influenced by sex and rearing substrates, and differed between body parts. Lab food–reared flies had lower amounts of most hydrocarbons than flies reared on fermenting cactus substrates. We discovered 48 male- and species-specific hydrocarbons ranging in size from C22 to C50 in the male anogenital region of both species, most not described before. These included several oxygen-containing hydrocarbons in addition to high intensity signals corresponding to putative triacylglycerides, amounts of which were influenced by larval rearing substrates. Some of these compounds were transferred to female cuticles in high amounts during copulation. This is the first study showing that triacylglycerides may be a separate class of courtship-related signaling molecules in drosophilids. This study also extends the kind and number of epicuticular hydrocarbons in these species and emphasizes the role of larval ecology in influencing amounts of these compounds, many of which mediate courtship success within and between species

    Spatiotemporal processing of somatosensory stimuli in schizotypy

    Get PDF
    Unusual interaction behaviors and perceptual aberrations, like those occurring in schizotypy and schizophrenia, may in part originate from impaired remapping of environmental stimuli in the body space. Such remapping is contributed by the integration of tactile and proprioceptive information about current body posture with other exteroceptive spatial information. Surprisingly, no study has investigated whether alterations in such remapping occur in psychosis-prone individuals. Four hundred eleven students were screened with respect to schizotypal traits using the Schizotypal Personality Questionnaire. A subgroup of them, classified as low, moderate, and high schizotypes were to perform a temporal order judgment task of tactile stimuli delivered on their hands, with both uncrossed and crossed arms. Results revealed marked differences in touch remapping in the high schizotypes as compared to low and moderate schizotypes. For the first time here we reveal that the remapping of environmental stimuli in the body space, an essential function to demarcate the boundaries between self and external world, is altered in schizotypy. Results are discussed in relation to recent models of 'self-disorders' as due to perceptual incoherence

    Phenetic distances in the Drosophila melanogaster-subgroup species and oviposition-site preference for food components

    Get PDF
    Oviposition-site preferences (O.S.P.) have been investigated in females of six sibling species of the Drosophila melanogaster subgroup. O.S.P. were determined for standard food components and yeast genotypes. Females of all species showed a strong preference for complete medium and avoidance of pure agar as an egg-deposition site.\ud \ud Ecological trees of the species on the basis of rank correlations were constructed. In ‘no-choice’ situations they agree with phylogenetic trees obtained by different means but in ‘choice’ situations they do not agree too well.\ud \ud All species showed a high egg production on live yeast compared with standard medium (with killed yeast) and D. erecta females demonstrated discrimination between yeast genotypes. Niche breadth calculated from survival on the sterol mutant yeasts correlated fairly well with phylogenetic trees

    How does it feel to act together?

    Get PDF
    This paper on the phenomenology of joint agency proposes a foray into a little explored territory at the intersection of two very active domains of research: joint action and sense of agency. I explore two ways in which our experience of joint agency may differ from our experience of individual agency. First, the mechanisms of action specification and control involved in joint action are typically more complex than those present in individual actions, since it is crucial for joint action that people coordinate their plans and actions. I discuss the implications that these coordination requirements might have for the strength of the sense of agency an agent may experience for a joint action. Second, engagement in joint action may involve a transformation of agentive identity and a partial or complete shift from a sense of self-agency to a sense of we-agency. I discuss several factors that may contribute to shaping our sense of agentive identity in joint action

    Peripersonal Space and Margin of Safety around the Body: Learning Visuo-Tactile Associations in a Humanoid Robot with Artificial Skin

    Get PDF
    This paper investigates a biologically motivated model of peripersonal space through its implementation on a humanoid robot. Guided by the present understanding of the neurophysiology of the fronto-parietal system, we developed a computational model inspired by the receptive fields of polymodal neurons identified, for example, in brain areas F4 and VIP. The experiments on the iCub humanoid robot show that the peripersonal space representation i) can be learned efficiently and in real-time via a simple interaction with the robot, ii) can lead to the generation of behaviors like avoidance and reaching, and iii) can contribute to the understanding the biological principle of motor equivalence. More specifically, with respect to i) the present model contributes to hypothesizing a learning mechanisms for peripersonal space. In relation to point ii) we show how a relatively simple controller can exploit the learned receptive fields to generate either avoidance or reaching of an incoming stimulus and for iii) we show how the robot can select arbitrary body parts as the controlled end-point of an avoidance or reaching movement
    corecore