7,247 research outputs found

    Genotype and environment interaction on yield and quality parameters of organically grown winter wheat – Triticum aestivum L. genotypes

    Get PDF
    The interaction of genotype and environment upon yield and quality parameters of eight winter wheat (Triticum aestivum L.) genotypes was studied under organic conditions in Austria over two growing periods, 2001/2002 and 2002/2003, respectively. Two sites that have significantly different climatic conditions, Innviertel and Marchfeld, were chosen for the field experiment. Study site weather and soil conditions are important yield-affecting factors. Although the yield of Marchfeld-grown genotypes were lower, they had shown higher quality parameter values. Soil moisture conditions increase the grain yield but decrease its quality. To obtain seed with higher quality, a production site with favourable climate conditions should be chosen

    The proteostasis network and its decline in ageing

    No full text
    Ageing is a major risk factor for the development of many diseases, prominently including neurodegenerative disorders such as Alzheimer disease and Parkinson disease. A hallmark of many age-related diseases is the dysfunction in protein homeostasis (proteostasis), leading to the accumulation of protein aggregates. In healthy cells, a complex proteostasis network, comprising molecular chaperones and proteolytic machineries and their regulators, operates to ensure the maintenance of proteostasis. These factors coordinate protein synthesis with polypeptide folding, the conservation of protein conformation and protein degradation. However, sustaining proteome balance is a challenging task in the face of various external and endogenous stresses that accumulate during ageing. These stresses lead to the decline of proteostasis network capacity and proteome integrity. The resulting accumulation of misfolded and aggregated proteins affects, in particular, postmitotic cell types such as neurons, manifesting in disease. Recent analyses of proteome-wide changes that occur during ageing inform strategies to improve proteostasis. The possibilities of pharmacological augmentation of the capacity of proteostasis networks hold great promise for delaying the onset of age-related pathologies associated with proteome deterioration and for extending healthspan

    On a Conjecture of Rapoport and Zink

    Full text link
    In their book Rapoport and Zink constructed rigid analytic period spaces FwaF^{wa} for Fontaine's filtered isocrystals, and period morphisms from PEL moduli spaces of pp-divisible groups to some of these period spaces. They conjectured the existence of an \'etale bijective morphism FaFwaF^a \to F^{wa} of rigid analytic spaces and of a universal local system of QpQ_p-vector spaces on FaF^a. For Hodge-Tate weights n1n-1 and nn we construct in this article an intrinsic Berkovich open subspace F0F^0 of FwaF^{wa} and the universal local system on F0F^0. We conjecture that the rigid-analytic space associated with F0F^0 is the maximal possible FaF^a, and that F0F^0 is connected. We give evidence for these conjectures and we show that for those period spaces possessing PEL period morphisms, F0F^0 equals the image of the period morphism. Then our local system is the rational Tate module of the universal pp-divisible group and enjoys additional functoriality properties. We show that only in exceptional cases F0F^0 equals all of FwaF^{wa} and when the Shimura group is GLnGL_n we determine all these cases.Comment: v2: 48 pages; many new results added, v3: final version that will appear in Inventiones Mathematica

    Tiefenverteilung von Wurzeln bei Winterweizen

    Get PDF
    The production and distribution of roots was examined for two winter wheat cultivars (Capo and Saturnus). Plants were grown in PVC tubes of 150 cm length that were placed in a field. The length of roots in 20 cm soil sections was measured at three times. Mean root length densities decreased from 7-15 cm cm-3 soil in the top 20 cm soil to 2 cm cm-3 at soil depths below 80 cm. Only slight differences were obtained for the two cultivars and between harvests. Saturnus produced relatively greater root lengths in upper soil horizons, while Capo spread its roots further down the soil profile. Maximum rooting depth was between 150 to 160 cm

    Ultrahigh resolution optical coherence tomography using a superluminescent light source

    Get PDF
    A superluminescent Ti:Al2O3 crystal is demonstrated as a light source for ultrahigh resolution optical coherence tomography (OCT). Single spatial mode, fiber coupled output powers of ~40 μW can be generated with 138 nm bandwidth using a 5 W frequency doubled, diode pumped laser, pumping a thin Ti:Al2O3 crystal. Ultrahigh resolution OCT imaging is demonstrated with 2.2 μm axial resolution in air, or 1.7 μm in tissue, with >86 dB sensitivity. This light source provides a simple and robust alternative to femtosecond lasers for ultrahigh resolution OCT imaging

    Temporal and dimensional effects in evolutionary graph theory

    Full text link
    The spread in time of a mutation through a population is studied analytically and computationally in fully-connected networks and on spatial lattices. The time, t_*, for a favourable mutation to dominate scales with population size N as N^{(D+1)/D} in D-dimensional hypercubic lattices and as N ln N in fully-connected graphs. It is shown that the surface of the interface between mutants and non-mutants is crucial in predicting the dynamics of the system. Network topology has a significant effect on the equilibrium fitness of a simple population model incorporating multiple mutations and sexual reproduction. Includes supplementary information.Comment: 6 pages, 4 figures Replaced after final round of peer revie

    Dynamic Modeling and Simulation of a Real World Billiard

    Full text link
    Gravitational billiards provide an experimentally accessible arena for testing formulations of nonlinear dynamics. We present a mathematical model that captures the essential dynamics required for describing the motion of a realistic billiard for arbitrary boundaries. Simulations of the model are applied to parabolic, wedge and hyperbolic billiards that are driven sinusoidally. Direct comparisons are made between the model's predictions and previously published experimental data. It is shown that the data can be successfully modeled with a simple set of parameters without an assumption of exotic energy dependence.Comment: 10 pages, 3 figure

    Making SPIFFI SPIFFIER: Upgrade of the SPIFFI instrument for use in ERIS and performance analysis from re-commissioning

    Full text link
    SPIFFI is an AO-fed integral field spectrograph operating as part of SINFONI on the VLT, which will be upgraded and reused as SPIFFIER in the new VLT instrument ERIS. In January 2016, we used new technology developments to perform an early upgrade to optical subsystems in the SPIFFI instrument so ongoing scientific programs can make use of enhanced performance before ERIS arrives in 2020. We report on the upgraded components and the performance of SPIFFI after the upgrade, including gains in throughput and spatial and spectral resolution. We show results from re-commissioning, highlighting the potential for scientific programs to use the capabilities of the upgraded SPIFFI. Finally, we discuss the additional upgrades for SPIFFIER which will be implemented before it is integrated into ERIS.Comment: 20 pages, 12 figures. Proceedings from SPIE Astronomical Telescopes and Instrumentation 201
    corecore