29,638 research outputs found
Radiative Neutrino Mass, Dark Matter and Leptogenesis
We propose an extension of the standard model, in which neutrinos are Dirac
particles and their tiny masses originate from a one-loop radiative diagram.
The new fields required by the neutrino mass-generation also accommodate the
explanation for the matter-antimatter asymmetry and dark matter in the
universe.Comment: 4 pages, 3 figures. Revised version with improved model. Accepted by
PR
Neutrino masses, leptogenesis and dark matter in hybrid seesaw
We suggest a hybrid seesaw model where relatively ``light''right-handed
neutrinos give no contribution to the neutrino mass matrix due to a special
symmetry. This allows their Yukawa couplings to the standard model particles to
be relatively strong, so that the standard model Higgs boson can decay
dominantly to a left and a right-handed neutrino, leaving another stable
right-handed neutrino as cold dark matter. In our model neutrino masses arise
via the type-II seesaw mechanism, the Higgs triplet scalars being also
responsible for the generation of the matter-antimatter asymmetry via the
leptogenesis mechanism.Comment: 4 page
Dirac neutrinos and anomaly-free discrete gauge symmetries
Relying on Dirac neutrinos allows an infinity of anomaly-free discrete gauge
symmetries to be imposed on the Supersymmetric Standard Model, some of which
are GUT-compatible.Comment: 24 pages, minor changes, existence of flipped discrete gauge
symmetries is pointed ou
Speed of Sound in the Mass Varying Neutrinos Scenario
We discuss about the speed of sound squared in the Mass Varying Neutrinos
scenario (MaVaNs). Recently, it was argued that the MaVaNs has a catastrophic
instability which is the emergence of an imaginary speed of sound at the
non-relativistic limit of neutrinos. As the result of this instability, the
neutrino-acceleron fluid cannot act as the dark energy. However, it is found
that the speed of sound squared in the neutrino-acceleron fluid could be
positive in our model. We examine the speed of sound in two cases of the scalar
potential. One is the small fractional power-law potential and another is the
logarithmic one. The power-law potential model with the right-handed neutrinos
gives a stable one.Comment: 17 pages, References added, minor modification
On Mitigation of Side-Channel Attacks in 3D ICs: Decorrelating Thermal Patterns from Power and Activity
Various side-channel attacks (SCAs) on ICs have been successfully
demonstrated and also mitigated to some degree. In the context of 3D ICs,
however, prior art has mainly focused on efficient implementations of classical
SCA countermeasures. That is, SCAs tailored for up-and-coming 3D ICs have been
overlooked so far. In this paper, we conduct such a novel study and focus on
one of the most accessible and critical side channels: thermal leakage of
activity and power patterns. We address the thermal leakage in 3D ICs early on
during floorplanning, along with tailored extensions for power and thermal
management. Our key idea is to carefully exploit the specifics of material and
structural properties in 3D ICs, thereby decorrelating the thermal behaviour
from underlying power and activity patterns. Most importantly, we discuss
powerful SCAs and demonstrate how our open-source tool helps to mitigate them.Comment: Published in Proc. Design Automation Conference, 201
Effective generation of Ising interaction and cluster states in coupled microcavities
We propose a scheme for realizing the Ising spin-spin interaction and atomic
cluster states utilizing trapped atoms in coupled microcavities. It is shown
that the atoms can interact with each other via the exchange of virtual photons
of the cavities. Through suitably tuning the parameters, an effective Ising
spin-spin interaction can be generated in this optical system, which is used to
produce the cluster states. This scheme does not need the preparation of
initial states of atoms and cavity modes, and is insensitive to cavity decay.Comment: 11pages, 2 figures, Revtex
Glassy Dynamics in a Frustrated Spin System: Role of Defects
In an effort to understand the glass transition, the kinetics of a spin model
with frustration but no quenched randomness has been analyzed. The
phenomenology of the spin model is remarkably similiar to that of structural
glasses. Analysis of the model suggests that defects play a major role in
dictating the dynamics as the glass transition is approached.Comment: 9 pages, 5 figures, accepted in J. Phys.: Condensed Matter,
proceedings of the Trieste workshop on "Unifying Concepts in Glass Physics
Baryon Destruction by Asymmetric Dark Matter
We investigate new and unusual signals that arise in theories where dark
matter is asymmetric and carries a net antibaryon number, as may occur when the
dark matter abundance is linked to the baryon abundance. Antibaryonic dark
matter can cause {\it induced nucleon decay} by annihilating visible baryons
through inelastic scattering. These processes lead to an effective nucleon
lifetime of 10^{29}-10^{32} years in terrestrial nucleon decay experiments, if
baryon number transfer between visible and dark sectors arises through new
physics at the weak scale. The possibility of induced nucleon decay motivates a
novel approach for direct detection of cosmic dark matter in nucleon decay
experiments. Monojet searches (and related signatures) at hadron colliders also
provide a complementary probe of weak-scale dark-matter--induced baryon number
violation. Finally, we discuss the effects of baryon-destroying dark matter on
stellar systems and show that it can be consistent with existing observations.Comment: 26 pages, 6 figure
- …